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Stochastic Optimal Control
In a stochastic optimal control problem, we wish to
minimise some quantity which depends on a random
process. The random process itself depends on a
control process, which we are allowed to choose in
order to get the optimal behaviour. Problems of
this type are treated in the textbooks [1, 2], for
example.

Problem Setup
•We consider a random process on a compact
domain Ω ⊆ Rd, which runs until it hits the
boundary.

•We wish to find the value function:
v(x) = inf

σ∈U
Ex

[∫ τ
0
f(Xσ

s ) ds+ g(Xσ
τ )
]
,

where
τ = inf {t ≥ 0 : Xσ

t ∈ ∂Ω} .
•The below diagram shows a realisation of such a
random process.

f in Ω

g on ∂ΩΩ ⊂ Rd

The Control Set
•We want to optimise over the set of

martingales X which have unit speed. We
think of martingales as processes whose value is
expected to stay the same on average over time.

•We can write such a process X as
dXσ

t = σt dBt,
where

σt ∈ U :=
{
σ : Tr(σσ>) = 1

}
,

and B is a Brownian motion.
•Therefore the set of controls U should be some
set of processes which take values in U .

•This is a natural analogue of Brownian motion
in higher dimensions.

•A related choice for U , as studied in [3], is

Ũ :=
{
σ : det(σσ>) ≥ 1

dd

}
.

• In some cases, U and Ũ give equivalent
optimisation problems.

Example
•Consider the following example with
X = (X(1),X(2)) ∈ R2.

•Find
v(x) = inf

σ∈U

{
Ex

[
−
∫ τ
0

1|Xσ
s |>R1

]}
,

where τ = inf {t ≥ 0 : |Xσ
t | = R2}.

f = 0

f = −1
R1

R2 g ≡ 0

•The optimal strategy should spend as much time
as possible in the outer ring.

•This can be achieved by moving tangentially to
the inner circle, as shown in the diagram above.

•We can write down the value function explicitly
as

v(x) =


R2

1−R2
2, |x| ≤ R1,

x2−R2
2, R1 < |x| ≤ R2.

Dynamic Programming Principle
•The key idea in solving such a problem is that, if
the process follows a sub-optimal strategy, its
total expected value increases over time.

•We say that v satisfies a dynamic programming
principle if
v(Xσ

t ) +
∫ t
0
f(Xσ

s ) ds is a submartingale
for any σ (i.e. this quantity has an upward
trend), and a martingale for the optimal control.

•From this, Itô’s formula gives us a PDE
formulation of the problem (see [1, 2]).

Hamilton-Jacobi-Bellman Equation
•The value function v should satisfy the following

Hamilton-Jacobi-Bellman (HJB) equation:
1
2 infσ∈U

{
Tr(σσ>D2v)

}
+ f = 0 in Ω,

v = g on ∂Ω.
•As in our example, v is not usually smooth.
•We interpret the PDE in the viscosity sense, a
weak form introduced in [4].

•Under some conditions, we have a comparison
principle, and v is the unique viscosity solution.

The Monge-Ampère Equation
•The HJB equation is a Monge-Ampère equation
when we optimise over the set Ũ .

•We see this by using the algebraic identity:
inf

{
Tr(AB) : B spd, det(B) ≥ 1

dd

}
= det(A)

1
d,

for any positive definite matrix A [5].
•Then the HJB equation is equivalent to the

Monge-Ampère equation:
−1

2
det(D2v) = fd, in Ω,

with v = g on the boundary, and v convex.
•Equations of this type arise in optimal transport,
with right hand side of the form f

g(∇v) (see [6]).

Martingale Optimal Transport
•The classical Monge-Kantorovich problem
consists of transporting mass from one
distribution µ to another ν, minimising a cost c.

•We minimise over probability measures:
inf

π∈Π(µ,ν)

∫
c(x, y)π(dx, dy),

Π(µ, ν) =
{
π :

∫
π(·, dν) = µ,

∫
π(dµ, ·) = ν

}
,

µ

ν

X

Yc(x, y)

•Martingale optimal transport imposes the
additional constraint that, given X ∼ µ, then
Y ∼ ν has expected value X .

•A Lagrangian formulation of this constrained
optimisation problem gives rise to stochastic
control problems of the type seen here [7].

•Fully exploring this connection is future work.
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