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Stochastic Optimal Control

In a stochastic optimal control problem, we wish to
minimise some quantity which depends on a random
process. [he random process itself depends on a
control process, which we are allowed to choose in
order to get the optimal behaviour. Problems of
this type are treated in the textbooks [1, 2], for
example.

Problem Setup

» We consider a random process on a compact
domain Q) C IR?, which runs until it hits the
boundary.

= We wish to find the value function:
o(z) = inf B |[" f(X7)ds + g(X7)].
where
T=inf{t >0: X7 € 000}

» The below diagram shows a realisation of such a
random process.

The Control Set

» We want to optimise over the set of
martingales X which have unit speed. We
think of martingales as processes whose value is

expected to stay the same on average over time.

» We can write such a process X as
dX; = o+dB;,
where
or € U := {O‘ :Tr(oo ') = 1},
and B is a Brownian motion.

= [ herefore the set of controls ¢/ should be some
set of processes which take values in U.

» This is a natural analogue of Brownian motion
in higher dimensions.

« A related choice for U, as studied in [3], is

\
~S

1
U := {O’ : det(oo ") .

= In some cases, U and U give equivalent
optimisation problems.
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Example

« Consider the following example with

X =(xW x®)eR?

)

= Find

fU(Qj) — inf {Ex [— /()Tl\ngRl]}’

oclU

where 7 = inf {t > 0: | X7| = Ro}.

» [he optimal strategy should spend as much time

as possible in the outer ring.

= This can be achieved by moving tangentially to

the inner circle, as shown in the diagram above.

« We can write down the value function explicitly

as

2 2
Rl - R27
r* — R5,

z| < Ry,
R < ‘ZIZ‘| < Ry.

v(z) =

Dynamic Programming Principle

« The key idea in solving such a problem is that, if

the process follows a sub-optimal strategy, its
total expected value increases over time.

« We say that v satisfies a dynamic programming

principle if
v(X7) + /Otf(XS") ds is a submartingale

for any o (i.e. this quantity has an upward
trend), and a martingale for the optimal control.

» From this, 1to's formula gives us a PDE
formulation of the problem (see [1, 2]).

Hamilton-Jacobi-Bellman Equation

« The value function v should satisfy the following
Hamilton-Jacobi-Bellman (HJB) equation:

(%inf(,eu {TT(O'O'TDQ”U)} +/f=0 in Q)
0Q).

vV =g¢q on
\
» As in our example, v is not usually smooth.

» We interpret the PDE in the viscosity sense, a
weak form introduced in [4].

» Under some conditions, we have a comparison
principle, and v is the unique viscosity solution.

The Monge-Ampere Equation

» The HJB equation is a Monge-Ampere equation
when we optimise over the set U.

» We see this by using the algebraic identity:

it {TH(AB) : Bspd, det(B) = 3| = det(A)’

for any positive definite matrix A [5].

\

« Then the HJB equation is equivalent to the
Monge-Ampere equation:

1
—idet(DQU) = %in O,

with v = ¢ on the boundary, and v convex.

» Equations of this type arise in optimal transport,

with right hand side of the form g(év) (see [6]).

Martingale Optimal Transport

» The classical Monge-Kantorovich problem
consists of transporting mass from one
distribution 1 to another v, minimising a cost c.

» We minimise over probability measures:

e | e(w, y)(dz, dy),

(o [a(dv) = p, [7(dp,-) = v}

« Martingale optimal transport imposes the
additional constraint that, given X ~ u, then
Y ~ v has expected value X.

« A Lagrangian formulation of this constrained
optimisation problem gives rise to stochastic
control problems of the type seen here [7].

« Fully exploring this connection is future work.
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