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Motivating problem

Given probability measures 1,7 on R? do there exist random
variables Mg, M such that

o E[M;| My| = My (martingale property) and
e Law(Mjy) = p and Law(M;) = v (mimicking property)?

Necessary condition: ;. = v in convex order

For any convex function v : RY 5 R,

/vdu < /vdy.

. also sufficient [Strassen '68]



Problem statement

Given a family of probability measures (11¢)ie; on RY, does there
exist a mimicking martingale M such that

LaW(Mt> = U, vVt € I?



Problem statement

Given a family of probability measures (11¢)ie; on RY, does there
exist a mimicking martingale M such that

LaW(Mt> = U, vVt € I?

Necessary condition
For any convex function v : R — R,

/Ud/,LS < /vd,ut, s <t.



Peacocks

Assume that p is a peacock; i.e. for any convex function

v:RI 5 R,
/vdus S/vdut, s < t.



Peacocks

Assume that p is a peacock; i.e. for any convex function

v:RI 5 R,
/Udﬂs < /Ud,u’tv s <t.

Processus Croissant pour I'Ordre Convexe

[Hirsch, Profetta, Roynette, Yor '11]
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Given a peacock (ut)ier on RY, does there exist a mimicking
martingale M such that
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Yes — [Strassen '65, Doob '68, Hirsch—-Roynette '13]
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Problem statement

Given a peacock (ut)ier on RY, does there exist a mimicking
martingale M such that

La.W(Mt) = U, vVt e I?

Desirable properties
e strong Markovianity

e continuity of paths

® uniqueness
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Profetta, Roynette, Stebegg, Tan, Touzi, Yor, ...
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Continuous time, d > 2

Given a continuous-time peacock (ft)se[o,1] ON R?, d > 2, does
there exist a mimicking Markov martingale?

Existing literature ...

. with the Markov property

no known results



Continuous time, d > 2

Given a continuous-time peacock (ft)se[o,1] ON R?, d > 2, does
there exist a mimicking Markov martingale?

Theorem 1 [Pammer, R., Schachermayer '22]

There exists a strong Markov martingale diffusion mimicking
a regularized continuous-time peacock on R?, d € N.



Continuous time, d > 2

Weakly continuous R?-valued square-integrable peacock (1) eefo,1]-
Regularize with a Gaussian pf := py; % y°(¢+9)



Continuous time, d > 2

Weakly continuous R%-valued square-integrable peacock (1) efo,1]-
Regularize with a Gaussian p := ji; % 7°(+9)

Theorem 1 [Pammer, R., Schachermayer '22]

There exists a measurable (¢,z) — o} (z) that is locally Lipschitz
in « and non-degenerate, uniformly in ¢ € [0, 1], and a Brownian
motion B such that Law (/) = p, for all t € [0, 1], where

dM! = of (MF)dB,.



Continuous time, d > 2

Weakly continuous R%valued square-integrable peacock (1) eefo,1)-
Regularize with a Gaussian pi} := i % 5(+9)

Theorem 1 [Pammer, R., Schachermayer '22]

There exists a measurable (¢, x) — o} (x) that is locally Lipschitz
in  and non-degenerate, uniformly in ¢ € [0, 1], and a Brownian
motion B such that Law(M}) = pj, for all t € [0, 1], where

AM? = oF(M?)dB,.

Moreover:

e M" is a strong Markov martingale with continuous paths;



Continuous time, d > 2

Weakly continuous R%-valued square-integrable peacock (1) efo,1)-
Regularize with a Gaussian i} := iz * 4+

Theorem 1 [Pammer, R., Schachermayer '22]

There exists a measurable (¢, z) — o} () that is locally Lipschitz
in  and non-degenerate, uniformly in ¢ € [0, 1], and a Brownian
motion B such that Law (M) = pj, for all ¢ € [0, 1], where

dM! = of (MF)dB,.

Moreover:

e M?" is a strong Markov martingale with continuous paths;

e There is no uniqueness for d > 2;



Continuous time, d > 2

Weakly continuous R%valued square-integrable peacock (1) eefo,1)-
Regularize with a Gaussian i} := iz * 4+
Theorem 1 [Pammer, R., Schachermayer '22]

There exists a measurable (¢, x) — o} (x) that is locally Lipschitz
in = and non-degenerate, uniformly in ¢ € [0, 1], and a Brownian
motion B such that Law(M}) = pj, for all ¢ € [0, 1], where

AM! = o (M?)dB,.

Moreover:

e M7 is a strong Markov martingale with continuous paths;
e There is no uniqueness for d > 2;

e The result does not hold without regularization.
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Theorem 1 [Pammer, R., Schachermayer '22]

There exists a strong Markov martingale diffusion mimicking the
regularized peacock.

Proof idea
e Discretise and take Bass martingales from py, to py, ., to get

a diffusion process
[Backhoff, Beiglbock, Huesmann, Kallblad '19]
[Backhoff, Beiglbock, Schachermayer, Tschiderer '23]
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[Krylov '85], [Gyongy '85], [Brunick, Shreve '13]
d)(tL = O'tth

dX, = 6,(X;)dW,;, Law(X,) = Law(X,), t € [0,1]

Law(Xy, ) = py, and & “nice”
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Continuous time, d > 2

Theorem 1 [Pammer, R., Schachermayer '22]

There exists a strong Markov martingale diffusion mimicking the
regularized peacock.

Proof idea
e Use stability of diffusions to pass to a limit

Theorem 2 [Pammer, R., Schachermayer '22]
For dX} = oF(X[F)dB; for “nice" o, suppose for each (t,x)

t t
/ ok (z)%ds — / os(x)?ds.
0 0

Then X*¥ — X in f.d.d., dX; = 0¢(X;)dB; and o “nice”.



Continuous time, d > 2

Weakly continuous R?-valued square-integrable peacock (ut)t€[071},
Regularize with a Gaussian pj := p * ,y:(t+o‘)
Theorem 1 [Pammer, R., Schachermayer '22]

There exists a measurable (¢, x) — o} (x) that is locally Lipschitz
in = and non-degenerate, uniformly in ¢ € [0, 1], and a Brownian
motion B such that Law(M}) = pj, for all ¢ € [0, 1], where

AM! = o (M?)dB,.

Moreover:

e MT" is a strong Markov martingale with continuous paths;
e There is no uniqueness for d > 2;

e The result does not hold without regularization.
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Faking Brownian motion

Do there exist stochastic processes with Brownian marginals that
are not Brownian motion?
[Hamza, Klebaner '07]

There exists some fake Brownian motion.

[Beiglbock, Lowther, Pammer, Schachermayer '21]

There exists a Markov process with continuous paths that mimics

Brownian marginals in dimension d = 1.
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Non-uniqueness

Theorem 3 [Pammer, R., Schachermayer '22]

There exists a R2-valued strong Markov martingale diffusion with
Brownian marginals, which is not a Brownian motion.

Qircular Brownian Motion
[Emery, Schachermayer '99]

[Fernholz, Karatzas, Ruf '18]
[Larsson, Ruf '20]

Theorem [Cox, R. '22]
There is a unique weak solution

but no strong solution of

[Cox, R. 22]

1 |—-X2
dX; = — tld Xo = 0.
t ‘Xt‘ [th] Wta 0 O



Non-uniqueness

Theorem 3 [Pammer, R., Schachermayer '22]

There exists a R2-valued strong Markov martingale diffusion with
Brownian marginals, which is not a Brownian motion.

Theorem [Cox, R. '22]
Let X be a weak solutlon of

dXt (Xt+X )th, XU ~ 1.

1
1X:|
Then X is a continuous strong

Markov fake Brownian motion.

[Pammer, R., Schachermayer '22]
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Counterexamples

Theorem 4 [Pammer, R., Schachermayer '22]

There exists a weakly continuous square-integrable peacock
(1t)sepo,1] on R such that, for the peacock (p¢ *7")tepo 1], there
exists no mimicking Markov martingale.

1. No continuous Markov
martingale mimicking u;
2. No Markov martingale
mimicking p;
3. No Markov martingale
mimicking (1 * v")¢efo1]-
[Cox, R. "22]
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e We prove the first known Kellerer-type result in arbitrary
dimension;

e In dimension d > 2, uniqueness fails;

e In general, the result can fail without some regularization.
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