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Comparing stochastic models

Aim: Compute a measure of model uncertainty

Eg.

P v(P) = sggEP[j(w, a)]

Want:

— Appropriate topology on laws of stochastic processes

— Distance we can actually compute
SDEs:

— Good computational methods available

— Rich class of models, beyond Lipschitz coefficients



b,B:R—)R, U,&:R—>[O,OO),X0:X0:$€R,

dXt = b(Xt)dt + O'(Xt)dBt
dX; = b(Xy)dt + o(Xy)dW;

p = Law(X), v = Law(X)

Theorem [R., Szolgyenyi "24+]

Under “weak assumptions” on the coefficients, we can compute an
“appropriate distance” by

T
d(p,v)? = E[/O | X — Xtht], with B = 117,



Auxiliary result

b:R—>R, 0:R—[0,00), Xg =2 €R,
dX; = b(Xy)dt 4+ o(X¢)dBy. (SDE)

Assumption (A)
b satisfies piecewise regularity conditions and exponential growth

condition,
o is Lipschitz and non-zero at the discontinuity points of b.

Theorem [R., Szodlgyenyi '24+]

Strong existence, pathwise uniqueness, and moment bounds hold
for (SDE) with coefficients satisfying (A). Moreover, for a
transformation-based semi-implicit Euler scheme, we obtain strong

convergence rates.
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Optimal transport

Probability measures j, v on RY

Find

Monge (1781)

Kantorovich (1942) ~» T random: replace (X, T'(X)) with
coupling (X,Y), X ~u, Y ~v

\Wasserstein distance metrises usual weak topology



[Backhoff-Veraguas, Bartl, Beiglbock, Eder '20], [Aldous '81]

T
1 2

“Cannot get rich”

V :=supE*[X;]= 0

— U



Adapted topology

by €PEY) ~ Wiwy) = inf
T: Typ=v

Z T, (X Xn\2] :

T(X) = (Ty(X1....,- Xn), ..., Tn(X1, ..., XN))



Adapted topology

p,v € PRYY  ~s inf E
T: Typ=v
adapted

T(X)=(Ti(X1),Te(X1, X2),...,TN(X1,..., XN))



Adapted topology

N
pveP®Y) ~  ANW3(uv):= inf E ZTn(X)—XnQ].
n=1

T: Typu=v
biadapted

T(X)=(T1(X1),T2(X1,X2),....,TN(X1,..., XN))

Similar definition of adapted Wasserstein distance in continuous
time w.r.t. L? norm on C([0,7],R))

More general cost functions ~~ bicausal optimal transport

[Aldous '81][Lasalle '18][Bion-Nadal, Talay '19]
Acciaio, Backhoff-Veraguas, Bartl, Beiglbock, Eder, Hellwig,
Kallblad, Pammer, Pflug, Pichler, Zalaschko, ...
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bb: R - R, 0,6: R—[0,00), Xo=Xo =2 R,

dXt = b(Xt)dt + U(Xt)dBt
dX, = b(X,)dt + 5(X,)dW,

p = Law(X), v = Law(X)
Theorem [R., Szolgyenyi '24+]

Under “weak assumptions” on the coefficients, we can compute
the adapted Wasserstein distance by

T
AM’;’(//.;/‘>:E[/ |Xt—Xt|2dt}, with B = V.
0



Coupling SDEs

bb: R =R, 0,6: R—[0,00), Xo=Xo =2 €R,
dXt = b(Xt)dt + O'(Xt)dBt
dX; = b(Xy)dt + 7(X;)dW;

p = Law(X), v = Law(X)

Theorem 1 [Backhoff-Veraguas, Killblad, R. '22]

Optimising over adapted maps 7’
=
Optimising over correlations between B, W.

Cf. [Bion-Nadal, Talay '19]



Couling SDEs

Example

Product coupling — B, W independent




Coupling SDEs

Synchronous coupling

Choose the same driving Brownian motion B = W.
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Proof of main result

dXt = b(Xt)dt + O'(Xt)dBt, XO =T ~ LaW(X) =W
dXt = E(Xt)dt + 5’(Xt)th, XO =T ~ Law()?) =V

Theorem [R., Szolgyenyi "24+]

Under “weak assumptions” on the coefficients, we can compute
the adapted Wasserstein distance by

T
AWQQ(M, I/) =E |:/ |Xt — Xt|2dt:| y with B = W.
0

1. Discretise SDEs:
2. Solve discrete-time bicausal optimal transport problem;

3. Pass to a limit.



Key result in discrete time

Z T,.(X Xﬁ] :

pv € PRYY  ~ AW (u,v) = inf
T: Tyu=v
b1adapted

Theorem [Riischendorf '85]

For u, v stochastically co-monotone, the unique optimiser is the

Knothe—Rosenblatt rearrangement.

Theorem [Backhoff-Veraguas, Kallblad, R. '22]

In the case of Lipschitz coefficients, the Euler—Maruyama scheme
is stochastically increasing when the Brownian increments are
truncated.

Cf. [Milstein, Repin, Tretyakov '02]



Transformation-based semi-implicit Euler scheme

Assumption (A)

Drift b: R — R satisfies the following conditions piecewise:

absolute continuity

one-sided Lipschitz condition

two-sided local Lipschitz condition

exponential growth

Diffusion o: R — [0, 00) satisfies

— global Lipschitz condition
— 0(&) #0, for k € {1,...,m} — no uniform ellipticity



Transformation-based semi-implicit Euler scheme

Under assumption (A) , the scheme is constructed as follows:

1. Apply the transformation from [Leobacher, Szdlgyenyi '17] to
(SDE),

2. Apply a semi-implicit Euler scheme with truncated Brownian
increments to the transformed SDE, [Hu '96][Higham, Mao,
Stuart '02]

3. Transform back.

Denoting by X" the scheme with step-size h, we obtain the result:

Theorem [R., Szdlgyenyi '24]
Let (b, o) satisfy Assumption 1. Then for all p > 1, there exists

Cp > 0 such that
Cpohz,  pell2
C'php(pl—l)7 P> 2

1
E||Xr - XpP|” <
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Assumptions
(A) discontinuous drift with exponential growth;

(B) bounded measurable drift, a-Hdlder and uniformly elliptic o;
(C) “regular” coefficients.

dX; = b(Xt)dt + O’(Xt)dBt, Xo=z ~ Law(X) =Uu
dXt = B<Xt)dt + 6'(Xt)th, XO =X ~ LaW(X) =V

Main Theorem [R., Szolgyenyi '24+]

Let (b,0) and (b, &) each satisfy one of assumptions (A), (B), (C).
Then, for p € [1,00), the adapted Wasserstein distance is given by

T
AWP (1, v) = E[/O 1 X, — Xt|pdt}, with B = 117

Synchronous coupling solves general bicausal transport problem



Summary

o We between SDEs;

e We prove for a new numerical

scheme




