
Bicausal optimal transport for SDEs with

irregular coefficients

Benjamin A. Robinson (University of Vienna)

January 10, 2024 — Stochastic and Deterministic Analysis for Irregular

Models, CIRM

Supported by Austrian Science Fund (FWF) projects [Y782-N25], [P35519], [P34743].

Joint work with

Michaela Szölgyenyi Julio Backhoff-Veraguas Sigrid Källblad

Universität Klagenfurt University of Vienna KTH Stockholm

Adapted Wasserstein distance between the laws of SDEs

(with J. Backhoff-Veraguas and S. Källblad) — http://arxiv.org/abs/2209.03243

Bicausal optimal transport for SDEs with irregular coefficients

(with M. Szölgyenyi) — https://arxiv.org/abs/2403.09941

http://arxiv.org/abs/2209.03243
https://arxiv.org/abs/2403.09941


Comparing stochastic models

Aim: Compute a measure of model uncertainty

E.g.

P 󰀁→ v(P) = sup
α∈A

EP[J (ω,α)]

Want:

– Appropriate topology on laws of stochastic processes

– Distance we can actually compute

SDEs:

– Good computational methods available

– Rich class of models, beyond Lipschitz coefficients



Main result

b, b̄ : R → R, σ, σ̄ : R → [0,∞), X0 = X̄0 = x ∈ R,

dXt = b(Xt)dt+ σ(Xt)dBt

dX̄t = b̄(X̄t)dt+ σ̄(X̄t)dWt

µ = Law(X), ν = Law(X̄)

Theorem [R., Szölgyenyi ’24+]

Under “weak assumptions” on the coefficients, we can compute an

“appropriate distance” by

d(µ, ν)2 = E
󰀗 󰁝 T

0
|Xt − X̄t|2dt

󰀘
, with B = W.



Auxiliary result

b : R → R, σ : R → [0,∞), X0 = x ∈ R,

dXt = b(Xt)dt+ σ(Xt)dBt. (SDE)

Assumption (A)

b satisfies piecewise regularity conditions and exponential growth

condition,

σ is Lipschitz and non-zero at the discontinuity points of b.

Theorem [R., Szölgyenyi ’24+]

Strong existence, pathwise uniqueness, and moment bounds hold

for (SDE) with coefficients satisfying (A). Moreover, for a

transformation-based semi-implicit Euler scheme, we obtain strong

convergence rates.
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Optimal transport

Probability measures µ, ν on RN

Find

W2
2 (µ, ν) := inf

T : T#µ=ν
E

󰀥
N󰁛

n=1

|Tn(X)−Xn|2
󰀦
.

T (X) = (T1(X1, . . . , XN ), . . . , TN (X1, . . . , XN ))

Monge (1781)

Kantorovich (1942) ⇝ T random: replace (X,T (X)) with

coupling (X,Y ), X ∼ µ, Y ∼ ν

Wasserstein distance metrises usual weak topology



Example

[Backhoff-Veraguas, Bartl, Beiglböck, Eder ’20], [Aldous ’81]
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Adapted topology

µ, ν ∈ P(RN ) ⇝ W2
2 (µ, ν) := inf

T : T#µ=ν
E

󰀥
N󰁛

n=1

|Tn(X)−Xn|2
󰀦
.

T (X) = (T1(X1, . . . , XN ), . . . , TN (X1, . . . , XN ))



Adapted topology

µ, ν ∈ P(RN ) ⇝ inf
T : T#µ=ν
adapted

E

󰀥
N󰁛

n=1

|Tn(X)−Xn|2
󰀦
.

T (X) = (T1(X1), T2(X1, X2), . . . , TN (X1, . . . , XN ))



Adapted topology

µ, ν ∈ P(RN ) ⇝ AW2
2(µ, ν) := inf

T : T#µ=ν
biadapted

E

󰀥
N󰁛

n=1

|Tn(X)−Xn|2
󰀦
.

T (X) = (T1(X1), T2(X1, X2), . . . , TN (X1, . . . , XN ))

Similar definition of adapted Wasserstein distance in continuous

time w.r.t. Lp norm on C([0, T ],R))

More general cost functions ⇝ bicausal optimal transport

[Aldous ’81][Lasalle ’18][Bion-Nadal, Talay ’19]

Acciaio, Backhoff-Veraguas, Bartl, Beiglböck, Eder, Hellwig,

Källblad, Pammer, Pflug, Pichler, Zalaschko, ...
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Main result

b, b̄ : R → R, σ, σ̄ : R → [0,∞), X0 = X̄0 = x ∈ R,

dXt = b(Xt)dt+ σ(Xt)dBt

dX̄t = b̄(X̄t)dt+ σ̄(X̄t)dWt

µ = Law(X), ν = Law(X̄)

Theorem [R., Szölgyenyi ’24+]

Under “weak assumptions” on the coefficients, we can compute

the adapted Wasserstein distance by

AW2
2 (µ, ν) = E

󰀗 󰁝 T

0
|Xt − X̄t|2dt

󰀘
, with B = W.



Coupling SDEs

b, b̄ : R → R, σ, σ̄ : R → [0,∞), X0 = X̄0 = x ∈ R,

dXt = b(Xt)dt+ σ(Xt)dBt

dX̄t = b̄(X̄t)dt+ σ̄(X̄t)dWt

µ = Law(X), ν = Law(X̄)

Theorem 1 [Backhoff-Veraguas, Källblad, R. ’22]

Optimising over adapted maps T

⇔
Optimising over correlations between B,W .

Cf. [Bion-Nadal, Talay ’19]



Couling SDEs

Example

Product coupling — B,W independent



Coupling SDEs

Synchronous coupling

Choose the same driving Brownian motion B = W .
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Proof of main result

dXt = b(Xt)dt+ σ(Xt)dBt, X0 = x ⇝ Law(X) = µ

dX̄t = b̄(X̄t)dt+ σ̄(X̄t)dWt, X̄0 = x ⇝ Law(X̄) = ν

Theorem [R., Szölgyenyi ’24+]

Under “weak assumptions” on the coefficients, we can compute

the adapted Wasserstein distance by

AW2
2 (µ, ν) = E

󰀗 󰁝 T

0
|Xt − X̄t|2dt

󰀘
, with B = W.

1. Discretise SDEs;

2. Solve discrete-time bicausal optimal transport problem;

3. Pass to a limit.



Key result in discrete time

µ, ν ∈ P(RN ) ⇝ AW2
2 (µ, ν) := inf

T : T#µ=ν
biadapted

E

󰀥
N󰁛

n=1

|Tn(X)−Xn|2
󰀦
.

Theorem [Rüschendorf ’85]

For µ, ν stochastically co-monotone, the unique optimiser is the

Knothe–Rosenblatt rearrangement.

Theorem [Backhoff-Veraguas, Källblad, R. ’22]

In the case of Lipschitz coefficients, the Euler–Maruyama scheme

is stochastically increasing when the Brownian increments are

truncated.

Cf. [Milstein, Repin, Tretyakov ’02]



Transformation-based semi-implicit Euler scheme

Assumption (A)

Drift b : R → R satisfies the following conditions piecewise:

– absolute continuity

– one-sided Lipschitz condition

– two-sided local Lipschitz condition

– exponential growth

ξ1 ξ2 ξm−1 ξm

Diffusion σ : R → [0,∞) satisfies

– global Lipschitz condition

– σ(ξk) ∕= 0, for k ∈ {1, . . . ,m} — no uniform ellipticity



Transformation-based semi-implicit Euler scheme

Under assumption (A) , the scheme is constructed as follows:

1. Apply the transformation from [Leobacher, Szölgyenyi ’17] to

(SDE),

2. Apply a semi-implicit Euler scheme with truncated Brownian

increments to the transformed SDE, [Hu ’96][Higham, Mao,

Stuart ’02]

3. Transform back.

Denoting by Xh the scheme with step-size h, we obtain the result:

Theorem [R., Szölgyenyi ’24]
Let (b,σ) satisfy Assumption 1. Then for all p ≥ 1, there exists

Cp ≥ 0 such that

E
󰁫
|XT −Xh

T |p
󰁬 1

p ≤

󰀻
󰀿

󰀽
Cph

1
2 , p ∈ [1, 2],

Cph
1

p(p−1) , p ≥ 2.
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Main result

Assumptions
(A) discontinuous drift with exponential growth;

(B) bounded measurable drift, α-Hölder and uniformly elliptic σ;

(C) “regular” coefficients.

dXt = b(Xt)dt+ σ(Xt)dBt, X0 = x ⇝ Law(X) = µ

dX̄t = b̄(X̄t)dt+ σ̄(X̄t)dWt, X̄0 = x ⇝ Law(X̄) = ν

Main Theorem [R., Szölgyenyi ’24+]

Let (b,σ) and (b̄, σ̄) each satisfy one of assumptions (A), (B), (C).

Then, for p ∈ [1,∞), the adapted Wasserstein distance is given by

AWp
p (µ, ν) = E

󰀗 󰁝 T

0
|Xt − X̄t|pdt

󰀘
, with B = W

Synchronous coupling solves general bicausal transport problem



Summary

• We compute adapted Wasserstein distance between SDEs;

• We prove strong convergence rates for a new numerical

scheme


