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Distances between stochastic processes

(Xt)tep,1), (Ye)iepo,1) continuous-time real-valued processes
~~ 1, v probability measures on Q := C([0, 1], R)

How to choose a “good” distance d(u,v)?

E.g. Wasserstein distance W,:

1
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Cpl(p,v) :={m € P(Q x Q): 7 has marginals u, v}
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Distances between stochastic processes

V, = sup EHn [XT] ~ V = supE“[XT} =0
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Distances between stochastic processes

Want

E.g. Acciaio, Aldous, Backhoff-Veraguas, Bartl, Beiglbock,

Bion-Nadal, Eder, Hellwig, Lassalle, Pammer, Pflug, Pichler, Talay,
among others ...



Coupling SDEs

dXt = b(Xt)dt + U(Xt)th ) 1%
dXt = B(Xt)dt + 6’(Xt)th ~ V.
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Coupling SDEs

Introduce

Cply. (i, v) := {m € Cpl(p,v): 7 is bi-causal}
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Adapted Wasserstein distance

Introduce

Cply (4, v) := {7 € Cpl(p,v): mis bi-causal}

The problem:

Find adapted Wasserstein distance:

1
AW (1, v) = inf E™ [/ lwy — @y [P dt] .
71—ecplbc(uvy) 0
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Adapted Wasserstein distance

dXt = b(Xt)dt + O'(Xt)th ~ 1%
dX, = b(Xy)dt + (X)) dW;  ~

The problem:

Find

AWE (1, v) = inf [/ lwe — @y [P dt]

71-ecplbc Hy V

Theorem 1 [Backhoff-Veraguas, Kaillblad, R. "22]

Optimising over bi-causal couplings
=
Optimising over correlations between W, W .



Adapted Wasserstein distance

Example

Product coupling — W, W independent

—0.501




Adapted Wasserstein distance

Synchronous coupling

Choose the same driving Brownian motion W = W.
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Adapted Wasserstein distance

dXt = b(Xt)dt + O'(Xt)th X 1%
dXt = B(XOdt + 5(Xt)th ~ V.

Theorem 2 [Backhoff-Veraguas, Killblad, R. '22]

Suppose that the coefficients are continuous with linear growth
and that pathwise uniqueness holds.

Then the synchronous coupling is optimal for AW, (p, v).

[Bion-Nadal, Talay '19]

For smooth coefficients using PDE methods



Adapted Wasserstein distance

dXt = b(Xt)dt + O'(Xt)th X 1%
dXt = B(XOdt + 5(Xt)th ~ V.

Theorem 2 [Backhoff-Veraguas, Killblad, R. '22]

Suppose that the coefficients are continuous with linear growth
and that pathwise uniqueness holds.

Then the synchronous coupling is optimal for AW, (p, v).

Example

If all coefficients are Lipschitz, the synchronous coupling is optimal.
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Knothe—Rosenblatt rearrangement



n
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Hny Vn ( ) R ECphy et ) ;| k yk|

Knothe—Rosenblatt rearrangement
— generalisation of monotone rearrangement




tn,Vn € P(R")  ~ inf E™ [Z |z — Z/k|p]

ﬂ'ECple Hn, V'ﬂ

Knothe—Rosenblatt rearrangement

U % Unif(0,1), X, = F;)}l




Uy € P(R™ S — P
lun 0 ( ) . WECPI};)ICI /an l/n [Z |xk yk| ]

Knothe—Rosenblatt rearrangement

id — _
Uy, % Unif(0,1), Xy = Figioony Oh), Yi=F,!

78R, 1) = Law(X,Y).

Theorem [Riischendorf '85]

If u,, and v, are both stochastically increasing, then the unique
optimiser is the Knothe—Rosenblatt coupling T (1, v,).
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Adapted Wasserstein distance

dXt = b(Xt)dt —+ O'(Xt)th X
dXt = B(Xt>dt + 5(Xt)th ~ V.

Theorem 2 [Backhoff-Veraguas, Kaillblad, R. '22]

Suppose that the coefficients are continuous with linear growth
and that pathwise uniqueness holds. Then the synchronous
coupling is optimal for AW, (p, v).

Under additional conditions, AW, (fin, vn) — AW, (i, v).

“Synchronous is continuous-time limit of Knothe—Rosenblatt”
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p v is the Knothe-Rosenblatt coupling.
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A monotone numerical scheme

dXt = b(Xt)dt + O'(Xt)th

Monotone Euler—Maruyama scheme
X{ = Xo,
XP = X+ b(Xin)(t — kh) 4+ o(Xpn) (W= W), t € (kh, (k+ 1))

Write XJ':= X! and p* = Law((X})x).

Remark

X,l; — X&—H) is increasing if b is Lipschitz, o is Lipschitz, h < 1

Corollary

The unique discrete-time bi-causal optimal coupling between

p, " is the Knothe—Rosenblatt coupling.
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Stability

Theorem 3 [Backhoff-Veraguas, Kaillblad, R. '22]

Suppose that (W, W) p-correlated induces an optimal coupling for
AW, (u", 1), for all h > 0.

Then (W, W) also induces an optimal coupling for the limiting
problem AW, (1, v).

Corollary
AW, (1 V") = AW,y (1, v).

Theorem 2 [Backhoff-Veraguas, Killblad, R. '22]

Suppose that the coefficients are continuous with linear growth
and that pathwise uniqueness holds.

Then the synchronous coupling is optimal for AW, (p, v).



Additional results

Stability of (degenerate) correlated SDEs;

Equivalence of topologies on a compact set;

Extension to SDEs with irregular drifts — work in progress
with Michaela Szélgyenyi

Convergence of optimisers — work in progress with Julio
Backhoff and Sigrid Kallblad
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Stability of (degenerate) correlated SDEs;

Equivalence of topologies on a compact set;

Extension to SDEs with irregular drifts — work in progress
with Michaela Szélgyenyi

Convergence of optimisers — work in progress with Julio
Backhoff and Sigrid Kallblad

Open questions in discrete and continuous time:

e Non-Markovianity
e Higher dimensions



e We prove optimality of the synchronous coupling;
e We introduce a monotone numerical scheme;

e We show a stability result for bi-causal transport.

[d Julio Backhoff-Veraguas, Sigrid Killblad, and Benjamin A
Robinson, Adapted Wasserstein distance between the laws of

SDEs, arXiv:2209.03243 [math] (2022).



