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(Xt)t∈[0,1], (Yt)t∈[0,1] continuous-time real-valued processes

⇝ µ, ν probability measures on Ω := C([0, 1],R)

How to choose a “good” distance d(µ, ν)?

E.g. Wasserstein distance Wp:

Wp
p (µ, ν) := inf

π∈Cpl(µ,ν)
Eπ

󰀗󰁝 1

0
|ωt − ω̄t|p dt
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E.g. Acciaio, Aldous, Backhoff-Veraguas, Bartl, Beiglböck,

Bion-Nadal, Eder, Hellwig, Lassalle, Pammer, Pflug, Pichler, Talay,

among others ...
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π∈Cplbc(µ,ν)
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Theorem 1 [Backhoff-Veraguas, Källblad, R. ’22]

Optimising over bi-causal couplings

⇔
Optimising over correlations between W, W̄ .
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Example
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Adapted Wasserstein distance

Synchronous coupling

Choose the same driving Brownian motion W = W̄ .
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[Bion-Nadal, Talay ’19]

For smooth coefficients using PDE methods
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Example

If all coefficients are Lipschitz, the synchronous coupling is optimal.
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Discretisation

µn, νn ∈ P(Rn) ⇝ inf
π∈Cplbc(µn,νn)
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Knothe–Rosenblatt rearrangement

Uk
iid∼ Unif(0, 1), Xk = F−1

µX1,...,Xk−1
(Uk), Yk = F−1

νY1,...,Yk−1
(Uk),

πKR(µn, νn) := Law(X,Y ).

Theorem [Rüschendorf ’85]

If µn and νn are both stochastically increasing, then the unique

optimiser is the Knothe–Rosenblatt coupling πKR(µn, νn).
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dXt = b(Xt)dt+ σ(Xt)dWt ⇝ µ

dX̄t = b̄(X̄t)dt+ σ̄(X̄t)dW̄t ⇝ ν.

Theorem 2 [Backhoff-Veraguas, Källblad, R. ’22]

Suppose that the coefficients are continuous with linear growth

and that pathwise uniqueness holds. Then the synchronous

coupling is optimal for AWp(µ, ν).

Under additional conditions, AWp(µn, νn) → AWp(µ, ν).

“Synchronous is continuous-time limit of Knothe–Rosenblatt”
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Open questions in discrete and continuous time:

• Non-Markovianity

• Higher dimensions

• ...



Summary

• We prove optimality of the synchronous coupling;

• We introduce a monotone numerical scheme;

• We show a stability result for bi-causal transport.

Julio Backhoff-Veraguas, Sigrid Källblad, and Benjamin A

Robinson, Adapted Wasserstein distance between the laws of

SDEs, arXiv:2209.03243 [math] (2022).


