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(Xn)nef1,..Ny (Ya)nequ,...ny real-valued stochastic processes
~+ 1, v probability measures on RY

How to choose a “good” distance d(u,v)?

E.g. Wasserstein distance Wh:

W3 (1, v) = oL

2 -

Metrises weak convergence: 11, — o iff Wa( iy, p0) — 0.
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Optimal transport

Probability measures j, v on R
Find

inf E
T: Typ=v

N
SOIT(X) ~ XnP] .

n=1

Monge (1781), Kantorovich (1942), ... and many more!

T(X)=(Ti(X1,...,. XN),-- -, INn(X1,..., XN))
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Want

E.g. Acciaio, Aldous, Backhoff-Veraguas, Bartl, Beiglbock,

Bion-Nadal, Eder, Hellwig, Lassalle, Pammer, Pflug, Pichler,
Posch, Talay, among others ...
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T(X) = (Ty(X1....,- Xn), ..., Tn(X1, ..., XN))



Adapted topology

pr e PRYY s  AWi(u,v):= inf E
T: Typ=v
adapted

T(X)=(Ti(X1),T2(X1, X2),....,TN(X1,..., XN))



Adapted topology

N
prePRYY ~  AWE(u,v):= inf E ZT(XH)—Xn|2].
n=1

T: Typ=v
adapted




Adapted topology

N
prePRYY ~  AWE(u,v):= inf E ZT(XH)—XnF].
n=1

T: Typ=v
adapted

Knothe—Rosenblatt rearrangement



Adapted topology

pv € PRY)  ~  AWZ(u,v):= inf E
T: Typ=v
adapted

N
> IT(X0) - Xn|2] :

n=1

Knothe—Rosenblatt rearrangement
— generalisation of monotone rearrangement




Adapted topology

N
prePRYY ~  AWE(u,v):= inf E ZT(XH)—XnF].
n=1

T: Typ=v
adapted

Knothe—Rosenblatt rearrangement

Ve =TER(Xy,..., Xp) = F, ) oF (X&),

VY1, Yy q HXq,...,: X1




Adapted topology

N
pv €PRY)  ~  AWF(pv):= inf E|Y |T(X,) - Xn|2] .
T: Typ=v —
adapted n=1
Knothe—Rosenblatt rearrangement
Y. :TlgiR(Xl,...,X/g) :FV_Yi,...,Yk,l OF,U«Xl ’’’’ 5, 1( k:)v

Theorem [Riischendorf '85] [Posch '23+]

Under a monotonicity condition, the unique optimiser is the
Knothe—Rosenblatt map TX¥R. This induces the adapted weak
toology.
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Adapted topology

1
o, v S P(Q) ~ AWQQ(M, I/) = inf E |:/ |T(Xt) - Xt2d7{| .
T
adapte

Synchronous coupling
Continuous-time version of Knothe—Rosenblatt coupling

W=Ww

Theorem 1 [Backhoff-Veraguas, Kaillblad, R. '22]

Optimising over adapted maps 7’
4
Optimising over correlations between W, W.



Adapted topology

Example

Product coupling — W, W independent

—0.501




Adapted Wasserstein distance

Synchronous coupling

Choose the same driving Brownian motion W = W.




Adapted Wasserstein distance

d)(tL = b(Xt)dt + U(Xt)th ) 1%
dXt = B(Xt)dt + 6'(Xt)th XD

bb:R—>R,0,6:R— R,

Theorem 2 [Backhoff-Veraguas, Killblad, R. '22] [R.,
Szolgyenyi '23]

Under very mild conditions, the synchronous coupling is optimal.
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e We prove optimality of the synchronous coupling;
e We introduce a monotone numerical scheme;

e We show a stability result for bi-causal transport.

[d Julio Backhoff-Veraguas, Sigrid Killblad, and Benjamin A
Robinson, Adapted Wasserstein distance between the laws of

SDEs, arXiv:2209.03243 [math] (2022).
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Stability

Theorem 3 [Backhoff-Veraguas, Kaillblad, R. '22]

Suppose that (W, W) p-correlated induces an optimal coupling for
AW, (u", 1), for all h > 0.

Then (W, W) also induces an optimal coupling for the limiting
problem AW, (1, v).

Corollary
AW, (1 V") = AW,y (1, v).

Theorem 2 [Backhoff-Veraguas, Killblad, R. '22]

Suppose that the coefficients are continuous with linear growth
and that pathwise uniqueness holds.

Then the synchronous coupling is optimal for AW, (p, v).



Additional results

Stability of (degenerate) correlated SDEs;

Equivalence of topologies on a compact set;

Extension to SDEs with irregular drifts — work in progress
with Michaela Szélgyenyi

Convergence of optimisers — work in progress with Julio
Backhoff and Sigrid Kallblad
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Equivalence of topologies on a compact set;

Extension to SDEs with irregular drifts — work in progress
with Michaela Szélgyenyi

Convergence of optimisers — work in progress with Julio
Backhoff and Sigrid Kallblad

Open questions in discrete and continuous time:

e Non-Markovianity
e Higher dimensions
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