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E.g. Wasserstein distance W2:

W2
2 (µ, ν) := inf

T : T#µ=ν
E

󰀥
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Metrises weak convergence: µn ⇀ µ iff W2(µn, µ) → 0.
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Optimal transport

Probability measures µ, ν on RN

Find

inf
T : T#µ=ν

E

󰀥
N󰁛

n=1

|T (Xn)−Xn|2
󰀦
.

Monge (1781), Kantorovich (1942), ... and many more!

T (X) = (T1(X1, . . . , XN ), . . . , TN (X1, . . . , XN ))
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E.g. Acciaio, Aldous, Backhoff-Veraguas, Bartl, Beiglböck,

Bion-Nadal, Eder, Hellwig, Lassalle, Pammer, Pflug, Pichler,

Posch, Talay, among others ...
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Adapted topology

µ, ν ∈ P(RN ) ⇝ AW2
2 (µ, ν) := inf

T : T#µ=ν
adapted

E

󰀥
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|T (Xn)−Xn|2
󰀦
.

Knothe–Rosenblatt rearrangement

Yk = TKR
k (X1, . . . , Xk) = F−1

νY1,...,Yk−1
◦ FµX1,...,Xk−1

(Xk),

Theorem [Rüschendorf ’85] [Posch ’23+]

Under a monotonicity condition, the unique optimiser is the

Knothe–Rosenblatt map TKR. This induces the adapted weak

toology.
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Synchronous coupling
Continuous-time version of Knothe–Rosenblatt coupling

W = W̄

Theorem 1 [Backhoff-Veraguas, Källblad, R. ’22]

Optimising over adapted maps T

⇔
Optimising over correlations between W, W̄ .



Adapted topology

Example

Product coupling — W, W̄ independent



Adapted Wasserstein distance

Synchronous coupling

Choose the same driving Brownian motion W = W̄ .



Adapted Wasserstein distance

dXt = b(Xt)dt+ σ(Xt)dWt ⇝ µ

dX̄t = b̄(X̄t)dt+ σ̄(X̄t)dW̄t ⇝ ν.

b, b̄ : R → R, σ, σ̄ : R → R+

Theorem 2 [Backhoff-Veraguas, Källblad, R. ’22] [R.,

Szölgyenyi ’23]

Under very mild conditions, the synchronous coupling is optimal.
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Summary

• We prove optimality of the synchronous coupling;

• We introduce a monotone numerical scheme;

• We show a stability result for bi-causal transport.

Julio Backhoff-Veraguas, Sigrid Källblad, and Benjamin A

Robinson, Adapted Wasserstein distance between the laws of

SDEs, arXiv:2209.03243 [math] (2022).
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Stability

Theorem 3 [Backhoff-Veraguas, Källblad, R. ’22]

Suppose that (W, W̄ ) ρ-correlated induces an optimal coupling for

AWp(µ
h, νh), for all h > 0.

Then (W, W̄ ) also induces an optimal coupling for the limiting

problem AWp(µ, ν).

Corollary

AWp(µ
h, νh) → AWp(µ, ν).

Theorem 2 [Backhoff-Veraguas, Källblad, R. ’22]

Suppose that the coefficients are continuous with linear growth

and that pathwise uniqueness holds.

Then the synchronous coupling is optimal for AWp(µ, ν).
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Open questions in discrete and continuous time:

• Non-Markovianity

• Higher dimensions

• ...
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