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Introduction and Motivation

Problem

Minimise
E
[∫ τD

0
f(Xs) ds+ g(XτD)

]
over all continuous martingales X with fixed quadratic variation,
defined on some bounded domain

D ⊂ R2.

Motivation

• Under minimal modelling assumptions, find best case models
• Connections to martingale optimal transport



Problem Formulation



Problem Statement

Fix a probability space on which a 1-dimensional Brownian motion
B is defined, with natural filtration F.

Let Xσ be a strong solution to

dXσ
t = σt dBt; Xσ

0 = x,

for processes (σt)t≥0 ∈ U , where U is the set of F-progressively
measurable processes taking values in

U = {σ ∈ R2 : Tr(σσ⊤) = 1}.

Find the value function

v(x) := inf
σ∈U

Ex

[∫ τ

0
f(Xσ

s ) ds+ g(Xσ
τ )

]
.



Assumptions

v(x) := inf
σ∈U

Ex

[∫ τ

0
f(Xσ

s ) ds+ g(Xσ
τ )

]
.

1. D = BR(0) ⊂ R2

2. f radially symmetric; i.e. f(x) = f̃(|x|)
3. g constant
4. f continuous
5. f̃ ′(r+) exists for all r ≥ 0 with limr→0 rf̃

′(r) = 0



Optimal Behaviour



Radial Motion

Optimal behaviour for f̃ increasing

• Control: σt =
1

|x|
x

• Radius process: dRt = dWt

Sample path of Xt
Sample path of Rt



Tangential Motion

Optimal behaviour for f̃ decreasing

• Control: σt =
1

|Xt|
X⊥

t

• Radius process:
dRt =

1

2Rt
dt ⇒ Rt =

√
|x|+ t

Sample path of Xt
Sample path of Rt



Construction of solution

Under our assumptions the optimal strategy is to switch between
radial and tangential motion.

Figure 3: Possible trajectory



Proof of Optimality

Under the given assumptions, we use the theory of viscosity
solutions to show optimality:

1. The value function v is continuous and M -convex
2. v satisfies a dynamic programming principle
3. v is the unique viscosity solution toinfσ∈U Tr(D2vσσ⊤) = −f in D

v = g on ∂D
(HJB)

4. Find switching points to construct candidate value function V

5. The candidate function V solves (HJB)

Hence v = V .



Behaviour at the Origin



Relaxing Assumptions

v(x) := inf
σ∈U

Ex

[∫ τ

0
f(Xσ

s ) ds+ g(Xσ
τ )

]
.

1. D = BR(0) ⊂ R2

2. f radially symmetric; i.e. f(x) = f̃(|x|)
3. g constant
4. f continuous
5. f̃ ′(r+) exists for all r ≥ 0 with limr→0 rf̃

′(r) = 0



Relaxing Assumptions

v(x) := inf
σ∈U

Ex

[∫ τ

0
f(Xσ

s ) ds+ g(Xσ
τ )

]
.

1. D = BR(0) ⊂ R2

2. f radially symmetric; i.e. f(x) = f̃(|x|)
3. g constant
4. f continuous in D \ {0}

5.∗ f̃ ′(r+) exists for all r ≥ 0



Behaviour at the origin

If X moves tangentially at the origin, solving

dXt =
1

|Xt|
X⊥

t dBt; X0 = 0,

then the cost up to leaving a ball Bε(0) is

E0

[∫ τε

0
f(Xs) ds

]
= 2

∫ ε

0
ξf̃(ξ) dξ.

Claim: For f̃(r) ∼ − 1
rβ

, β ∈ [1, 2),

all other admissible strategies have a strictly greater cost.



An SDE with No Strong Solution



An SDE with no strong solution

Theorem
The SDE

dXt =
1

|Xt|
X⊥

t dBt; X0 = 0

has no strong solution.



Known SDEs with no strong solution

Tanaka’s SDE
dXt = sign(Xt) dBt

Key idea:
FB
t ⊆ F |X|

t ⊊ FX
t

Tsirelson’s SDE

dXt = b(t, (Xs)s≤t) dt+ dBt

Key idea:

b(t, (Xs)s≤t) is uniform on [0, 1) and independent of FB
∞.



An SDE with no strong solution

Theorem
The SDE

dXt =
1

|Xt|
X⊥

t dBt; X0 = 0

has no strong solution.

• The proof uses ideas from the study of Tsirelson’s equation.
• We introduce Circular Brownian Motion, as in

[Émery and Schachermayer, 1999].



Sketch of Proof

Write solutions t 7→ Xt ∈ R2 to the SDE as

Xt = Rt

[
cos θt

sin θt

]
.

Then
Rt =

√
t

and θ satisfies
dθt = t−

1
2 dBt.

Then θ is a deterministic time change of a circular Brownian
motion (CBM).



Sketch of Proof

Introduce the innovation filtration H of θ:

Ht := σ ({θs − θr : r < s ≤ t}) .

By a result of [Émery and Schachermayer, 1999],

• θt is uniform on [0, 2π);
• θt is independent of H∞.

In particular,
Ht ⊊ Fθ

t .



Sketch of Proof

We have shown that
Ht ⊊ Fθ

t .

However,

Bt −Bs =

∫ t

s
r

1
2 dθt is Ht-measurable,

and so, since Bs → 0 as s → 0,

FB
t ⊆ Ht.

Hence θ is not adapted to the natural filtration of B.



Gap between weak and strong values

Theorem
The SDE

dXt =
1

|Xt|
X⊥

t dBt; X0 = 0

has no strong solution.

However, there is a weak solution.

We can define a weak value function as in
[El Karoui and Tan, 2013]

vW (x) := inf
P∈Px

EP
[∫ τ

0
f(Xs) ds+ g(Xτ )

]
.

Then, for f̃(r) ∼ − 1
rβ

, β ∈ [1, 2), the weak solution to the above
SDE attains the weak value at the origin.



Gap between weak and strong values

v(x) := inf
σ∈U

Ex

[∫ τ

0
f(Xσ

s ) ds+ g(Xσ
τ )

]
vW (x) := inf

P∈Px

EP
[∫ τ

0
f(Xs) ds+ g(Xτ )

]
Conjecture
Suppose that there exists α ∈ (0,∞) and β∗ ∈ [1, 2) such that

lim
r→0

rβ f̃(r) =

+∞, β < β∗,

α, β = β∗.

Then
vW (0) < v(0).
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