An SDE with no strong solution arising from a problem of stochastic control

Ben Robinson

13th January 2020

University of Bath Joint work with Alex Cox

Problem

Minimise

$$\mathbb{E}\left[\int_0^{\tau_D} f(X_s) \,\mathrm{d}s + g(X_{\tau_D})\right]$$

over all continuous martingales \boldsymbol{X} with fixed quadratic variation, defined on some bounded domain

$$D \subset \mathbb{R}^2.$$

Motivation

- Under minimal modelling assumptions, find best case models
- Connections to martingale optimal transport

Problem Formulation

Fix a probability space on which a 1-dimensional Brownian motion B is defined, with natural filtration \mathbb{F} .

Let X^{σ} be a strong solution to

$$\mathrm{d}X_t^\sigma = \sigma_t \,\mathrm{d}B_t; \quad X_0^\sigma = x,$$

for processes $(\sigma_t)_{t\geq 0} \in \mathcal{U}$, where \mathcal{U} is the set of \mathbb{F} -progressively measurable processes taking values in

$$U = \{ \sigma \in \mathbb{R}^2 \colon \operatorname{Tr}(\sigma \sigma^\top) = 1 \}.$$

Find the value function

$$v(x) := \inf_{\sigma \in \mathcal{U}} \mathbb{E}^x \left[\int_0^\tau f(X_s^\sigma) \, \mathrm{d}s + g(X_\tau^\sigma) \right]$$

$$v(x) := \inf_{\sigma \in \mathcal{U}} \mathbb{E}^x \left[\int_0^\tau f(X_s^\sigma) \, \mathrm{d}s + g(X_\tau^\sigma) \right].$$

- 1. $D = B_R(0) \subset \mathbb{R}^2$
- 2. f radially symmetric; i.e. $f(x) = \tilde{f}(|x|)$
- 3. g constant
- 4. f continuous
- 5. $\tilde{f}'(r+)$ exists for all $r \ge 0$ with $\lim_{r \to 0} r \tilde{f}'(r) = 0$

Optimal Behaviour

Radial Motion

Optimal behaviour for \tilde{f} increasing

Control:

$$\sigma_t = \frac{1}{|x|}x$$

Radius process:

$$\mathrm{d}R_t = \mathrm{d}W_t$$

Tangential Motion

Optimal behaviour for \tilde{f} decreasing

Control:

$$\sigma_t = \frac{1}{|X_t|} X_t^{\perp}$$

- Radius process: $\mathrm{d}R_t = \frac{1}{2R_t}\,\mathrm{d}t \quad \Rightarrow \quad R_t = \sqrt{|x|+t}$

Construction of solution

Under our assumptions the optimal strategy is to switch between radial and tangential motion.

Figure 3: Possible trajectory

Under the given assumptions, we use the theory of viscosity solutions to show optimality:

- 1. The value function v is continuous and M-convex
- 2. v satisfies a dynamic programming principle
- 3. v is the unique viscosity solution to

$$\begin{cases} \inf_{\sigma \in U} \operatorname{Tr}(D^2 v \sigma \sigma^{\top}) = -f & \text{in } D \\ v = g & \text{on } \partial D \end{cases}$$
(HJB)

4. Find switching points to construct candidate value function ${\boldsymbol V}$

5. The candidate function V solves (HJB)

Hence v = V.

Behaviour at the Origin

$$v(x) := \inf_{\sigma \in \mathcal{U}} \mathbb{E}^x \left[\int_0^\tau f(X_s^\sigma) \, \mathrm{d}s + g(X_\tau^\sigma) \right].$$

- 1. $D = B_R(0) \subset \mathbb{R}^2$
- 2. f radially symmetric; i.e. $f(x) = \tilde{f}(|x|)$
- 3. g constant
- 4. f continuous
- 5. $\tilde{f}'(r+)$ exists for all $r \ge 0$ with $\lim_{r \to 0} r \tilde{f}'(r) = 0$

$$v(x) := \inf_{\sigma \in \mathcal{U}} \mathbb{E}^x \left[\int_0^\tau f(X_s^\sigma) \, \mathrm{d}s + g(X_\tau^\sigma) \right].$$

- 1. $D = B_R(0) \subset \mathbb{R}^2$
- 2. f radially symmetric; i.e. $f(x) = \tilde{f}(|x|)$
- 3. g constant
- 4. f continuous in $D \setminus \{0\}$
- 5.* $\tilde{f}'(r+)$ exists for all $r \ge 0$

If X moves tangentially at the origin, solving

$$\mathrm{d}X_t = \frac{1}{|X_t|} X_t^{\perp} \,\mathrm{d}B_t; \quad X_0 = 0,$$

then the cost up to leaving a ball $B_{arepsilon}(0)$ is

$$\mathbb{E}^0\left[\int_0^{\tau_{\varepsilon}} f(X_s) \,\mathrm{d}s\right] = 2\int_0^{\varepsilon} \xi \tilde{f}(\xi) \,\mathrm{d}\xi.$$

Claim: For $\tilde{f}(r) \sim -\frac{1}{r^{\beta}}$, $\beta \in [1,2)$,

all other admissible strategies have a strictly greater cost.

An SDE with No Strong Solution

Theorem The SDE

$$\mathrm{d}X_t = \frac{1}{|X_t|} X_t^{\perp} \,\mathrm{d}B_t; \quad X_0 = 0$$

has no strong solution.

Tanaka's SDE

$$\mathrm{d}X_t = \mathrm{sign}(X_t) \,\mathrm{d}B_t$$

Key idea:

$$\mathcal{F}_t^B \subseteq \mathcal{F}_t^{|X|} \subsetneq \mathcal{F}_t^X$$

Tsirelson's SDE

$$\mathrm{d}X_t = b(t, (X_s)_{s \le t}) \,\mathrm{d}t + \mathrm{d}B_t$$

Key idea:

 $b(t, (X_s)_{s \leq t})$ is uniform on [0, 1) and independent of \mathcal{F}^B_{∞} .

Theorem

The SDE

$$\mathrm{d} X_t = \frac{1}{|X_t|} X_t^{\perp} \, \mathrm{d} B_t; \quad X_0 = 0$$

has no strong solution.

- The proof uses ideas from the study of Tsirelson's equation.
- We introduce Circular Brownian Motion, as in [Émery and Schachermayer, 1999].

Write solutions $t\mapsto X_t\in \mathbb{R}^2$ to the SDE as

$$X_t = R_t \begin{bmatrix} \cos \theta_t \\ \sin \theta_t \end{bmatrix}$$

Then

$$R_t = \sqrt{t}$$

and $\boldsymbol{\theta}$ satisfies

$$\mathrm{d}\theta_t = t^{-\frac{1}{2}} \,\mathrm{d}B_t.$$

Then θ is a deterministic time change of a circular Brownian motion (CBM).

Introduce the innovation filtration \mathcal{H} of θ :

$$\mathcal{H}_t := \sigma \left(\{ \theta_s - \theta_r \colon r < s \le t \} \right).$$

By a result of [Émery and Schachermayer, 1999],

- θ_t is uniform on $[0, 2\pi)$;
- θ_t is independent of \mathcal{H}_{∞} .

In particular,

$$\mathcal{H}_t \subsetneq \mathcal{F}_t^{\theta}.$$

We have shown that

$$\mathcal{H}_t \subsetneq \mathcal{F}_t^{\theta}.$$

However,

$$B_t - B_s = \int_s^t r^{\frac{1}{2}} d\theta_t$$
 is \mathcal{H}_t -measurable,

and so, since $B_s \rightarrow 0$ as $s \rightarrow 0$,

$$\mathcal{F}_t^B \subseteq \mathcal{H}_t.$$

Hence θ is not adapted to the natural filtration of B.

Theorem

The SDE

$$\mathrm{d}X_t = \frac{1}{|X_t|} X_t^{\perp} \,\mathrm{d}B_t; \quad X_0 = 0$$

has no strong solution.

However, there is a weak solution.

We can define a weak value function as in [El Karoui and Tan, 2013]

$$v^W(x) := \inf_{\mathbb{P}\in\mathcal{P}_x} \mathbb{E}^{\mathbb{P}}\left[\int_0^\tau f(X_s) \,\mathrm{d}s + g(X_\tau)\right]$$

Then, for $\tilde{f}(r) \sim -\frac{1}{r^{\beta}}$, $\beta \in [1, 2)$, the weak solution to the above SDE attains the weak value at the origin.

Gap between weak and strong values

$$v(x) := \inf_{\sigma \in \mathcal{U}} \mathbb{E}^x \left[\int_0^\tau f(X_s^\sigma) \, \mathrm{d}s + g(X_\tau^\sigma) \right]$$
$$v^W(x) := \inf_{\mathbb{P} \in \mathcal{P}_x} \mathbb{E}^{\mathbb{P}} \left[\int_0^\tau f(X_s) \, \mathrm{d}s + g(X_\tau) \right]$$

Conjecture

Suppose that there exists $\alpha \in (0,\infty)$ and $\beta^* \in [1,2)$ such that

$$\lim_{r \to 0} r^{\beta} \tilde{f}(r) = \begin{cases} +\infty, & \beta < \beta^*, \\ \alpha, & \beta = \beta^*. \end{cases}$$

Then

 $v^W(0) < v(0).$

El Karoui, N. and Tan, X. (2013). Capacities, measurable selection and dynamic programming Part II: application in stochastic control problems.

arXiv preprint arXiv:1310.3364.

Émery, M. and Schachermayer, W. (1999).

A remark on Tsirelson's stochastic differential equation. In Azéma, J., Émery, M., Ledoux, M., and Yor, M., editors, *Séminaire de Probabilités XXXIII*, volume 1709, pages 291–303. Springer Berlin Heidelberg, Berlin, Heidelberg.