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SUMMARY

We study a stochastic control problem for continuous multidimensional martingales,

motivated by recent developments in robust finance and martingale optimal trans-

port.

In a radially symmetric environment, we explicitly construct the solution to

this problem under mild regularity conditions. We consolidate some ideas from the

theory of viscosity solutions of PDEs, which we then apply to solve our problem.

Under a particular growth condition on the cost function, we solve the control

problem in the two-dimensional case by proving that a weak solution of a certain

SDE generates a Brownian filtration. We prove non-existence of strong solutions

of this SDE and a related SDE, building on ideas from the study of Tsirelson’s

equation. These results lead us to conjecture that there is a gap between a Markov

formulation of the control problem and a strong and weak formulation.

Finally, we draw a connection to two further control problems. We characterise

each of these problems in terms of viscosity solutions of a Monge-Ampère equation,

similar to that which arises in the classical theory of optimal transport.
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CHAPTER 1

INTRODUCTION

The theory of stochastic optimal control is concerned with solving optimisation prob-

lems where the dynamics of the underlying process are stochastic. Such a process is

typically described via a stochastic integral or stochastic differential equation that

depends on an auxiliary stochastic process. This auxiliary process is known as the

control process and can be chosen from a given set. The aim of a stochastic optimal

control problem is to minimise the expectation of a cost that depends on the path

of the underlying stochastic process.

In this thesis we study stochastic optimal control problems and their intersection

with the theories of martingale optimal transport, existence of weak and strong

solutions of SDEs, and Monge-Ampère equations.

We consider problems related to the control of continuous multidimensional mar-

tingales with fixed quadratic variation. In one dimension, it is well known that any

continuous martingale is a time-change of a standard Brownian motion. Martingales

with fixed quadratic variation are a natural generalisation of Brownian motion to

higher dimensions. Imposing this constraint will allow us to study the structure of

the optimal martingales in the control problems that we consider. Further motiva-

tion for studying these problems comes from a connection with martingale optimal

transport, as we explain in the following section.

1.1 Motivation: Robust finance

We begin by motivating the stochastic control problem with a discussion of recent

developments in the field of robust finance.

In classical mathematical finance, one typically assumes that the price of some
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1.1. Motivation: Robust finance

underlying asset evolves according to an SDE from some parametric family. Then

historical data is used to estimate the parameters. Model misspecification is a

potential flaw in this approach. No model can be entirely correct and, in particular,

any model will fail to accurately predict the impact of a severe unexpected event. It

is therefore important to quantify the uncertainty in the choice of the model. This

type of uncertainty is often referred to as Knightian uncertainty.

To avoid the pitfalls that come with specifying a model, Hobson first proposed

a robust method for pricing and hedging a lookback option in the 1998 paper [32].

Hobson obtains hedging strategies and bounds on the price of the option that are

independent of any model and based instead on observed option prices. Since this

paper, the field of robust or model-independent finance has expanded significantly.

One of the bounds in [32] is obtained by relating the problem to a Skorokhod embed-

ding problem; a connection of this type holds in more generality. The 2011 lecture

notes of Hobson [33] provide a survey of results in model-independent finance that

are obtained from Skorokhod embedding techniques.

More recently, a variation of the Monge-Kantorovich optimal transport problem

has been applied to problems in robust finance. The martingale optimal transport

problem, as it is known, was initially developed in the context of robust finance in

papers of Beiglböck, Henry-Labordère and Penkner [3], Galichon, Henry-Labordère

and Touzi [27], Hobson and Klimmek [34], and Hobson and Neuberger [35].

1.1.1 Martingale optimal transport

The problem of martingale optimal transport is a variation on the classical Monge-

Kantorovich transport problem. Fix d ∈ N and suppose that µ0 and µ1 are proba-

bility measures on Rd. Let M be the set of probability measures on Rd × Rd and

define the set of couplings of µ0 and µ1 by

Π(µ0, µ1) :=

{
π ∈M :

∫
Rd
π(·, dy) = µ0(·),

∫
Rd
π(dx, ·) = µ1(·)

}
.

Let c : Rd × Rd be a measurable function. Then, as defined in Villani’s book [63],

the optimal transport problem is to find

inf
π∈Π(µ0,µ1)

∫
Rd×Rd

c(x, y)π(dx, dy).

To define the martingale optimal transport problem we restrict the set of admis-

sible couplings to satisfy an additional martingale condition, as in [4] for example.

2



1.1. Motivation: Robust finance

Define the set of martingale couplings of µ0 and µ1 by

ΠM(µ0, µ1) := {π ∈ Π(µ0, µ1) : Eπ(Y |X) = X, if Law(X, Y ) = π} .

Then the martingale optimal transport problem is to find

inf
π∈ΠM (µ0,µ1)

∫
Rd×Rd

c(x, y)π(dx, dy).

Equivalently, we can express this as finding

inf
π∈ΠM (µ0,µ1)
Law(X,Y )=π

Eπ [c(X, Y )] .

In the case that d = 1, Beiglböck and Juillet established results on the structure

of optimal couplings in [4], and in [5] Beiglböck, Nutz and Touzi proved a duality

result analogous to the classical Monge-Kantorovich duality. Namely, for c lower

semicontinuous and non-negative, define a set of triples of integrable functions

H(µ0, µ1) := {(φ, ψ, h) : c(X, Y ) ≥ φ(X) + ψ(Y ) + h(X)(Y −X)

π − a.s. for all π ∈ ΠM(µ0, µ1)} .

Then

inf
π∈ΠM (µ0,µ1)
Law(X,Y )=π

Eπ [c(X, Y )] = sup
(φ,ψ,h)∈H(µ0,µ1)

{Eµ0 [φ(X)] + Eµ1 [ψ(Y )]} .

Financially, the solution of the dual problem on the right hand side corresponds to

the maximum cost of a subhedging strategy, and this is independent of any choice

of model.

De March extended this duality result to higher dimensions in [16], based on the

structure results of De March and Touzi in [17]. Further results on the structure of

optimal couplings in arbitrary dimensions are established by De March in [15] and

by Ghoussoub, Kim and Lim in [29].

1.1.2 Relationship to stochastic control

In [57], Tan and Touzi present an alternative approach to solving the martingale

optimal transport problem, similar to the work of Benamou and Brenier for the

classical optimal transport problem in [8]. Backhoff-Veraguas, Beiglböck, Huesmann

and Källblad take a similar approach in [1]. In [57], Tan and Touzi consider a dual

3



1.2. Literature on the stochastic control problem

formulation of the problem, which we rewrite as follows. Consider a process X and

define the set of measures

P :=
{
P : (Xt)t∈[0,1] is a martingale under P, Law(X0) = µ0

}
.

Then, defining Cb(Rd) to be the set of bounded continuous functions on Rd,

inf
P∈P

Law(X1)=µ1

EP
[∫ 1

0

f(Xs) ds

]

= sup
λ∈Cb(Rd)

{
inf
P∈P

EP
[∫ 1

0

f(Xs) ds+ λ(X1)

]
−
∫
Rd
λ(x)µ1(dx)

}
.

The interior optimisation problem is a stochastic optimal control problem, and it is

this type of problem that we will investigate in this thesis. Instead of the fixed time

horizon in the above problem, we will consider martingales running up to the first

exit time of a bounded domain, and we will constrain the martingales to have fixed

quadratic variation. Defining the set of measures

P̃ := {P : (Xt)t≥0 is a martingale under P, 〈X〉t = t, t ≥ 0, Law(X0) = µ0} ,

and a set of stopping times T , we are interested in finding

sup
λ∈Cb(Rd)

{
sup
τ∈T

inf
P∈P̃

EP
[∫ τ

0

f(Xs) ds+ λ(Xτ )

]
−
∫
Rd
λ(x)µ1(dx)

}
.

In this thesis we focus on the interior control problem of optimising over martingales.

1.2 Literature on the stochastic control problem

An overview of stochastic control is presented by Fleming and Soner in [26], by Pham

in [49], and by Touzi in [58]. Pham and Touzi both describe some of the financial

applications of the theory of stochastic control in [49] and [58], respectively.

In the following section, we will take our definition for the strong formulation

of the control problem from [58]. We will also consider a weak formulation of the

control problem, following El Karoui and Tan in [20], where they introduced weak

and relaxed forms of the control problem. We will refer frequently to [26] and [58]

in the following sections as we introduce the dynamic programming principle and

the Hamilton-Jacobi-Bellman (HJB) equation as tools to solve the stochastic control

problem.
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1.2. Literature on the stochastic control problem

When considering martingales with a fixed quadratic variation, an appropriate

control set is

U =
{
σ ∈ Rd,d : Tr(σσ>) = 1

}
.

We see this by considering a martingale X that is adapted to the natural filtration

of some Brownian motion B. Then there exists an adapted process σ such that X

has the representation

dXt = σt dBt. (1.1)

If σt ∈ U for all t ≥ 0, then the quadratic variation 〈X〉 is given by

d〈X〉t = Tr(σtσ
>
t ) dt = dt.

With the above definition of the control set U , the value of the control problem

should solve the HJB equation

− 1

2
inf
σ∈U

Tr
(
D2uσσ>

)
= f. (1.2)

The specific problem of stochastic control over martingales with a fixed quadratic

variation has appeared recently in the two papers [40] and [41] of Larsson and Ruf.

In [40] the authors consider the problem of finding the greatest almost sure lower

bound on the exit time of a martingale from some domain. Larsson and Ruf apply

this control problem in [41] to find the minimal time horizon over which relative

arbitrage can be achieved for a market with at least two stocks. While the control

set in [40] and [41] is the same as in the problem that we study, we consider a

different class of cost functions.

The HJB equation (1.2) takes a similar form to the Black-Scholes-Barenblatt

(BSB) equation, as studied in [61]. Compared with the PDE (1.2), the BSB equation

has an additional time derivative term, and the infimum can be taken over a more

general compact control set. The BSB equation is an HJB equation corresponding to

a time-inhomogeneuous control problem of the type discussed in Section 3.3 of [58].

In [30], the BSB equation is applied to find a super-hedging strategy for European

multi-asset derivatives.

Feng and Jensen study another HJB equation in [24] that is related to the PDE

(1.2). The same control set U appears in their HJB equation, but there is an ad-

ditional term inside the infimum that depends directly on the element of U . In

Section 5.3, we will show that the control problem corresponding to this HJB equa-

tion is related to our original problem. In [24], the authors use the equivalence of

this HJB equation with a Monge-Ampère equation in order to develop a numeri-

5



1.3. Outline of the thesis

cal scheme for the Monge-Ampère equation, but they do not discuss the associated

control problem.

In [28], Gaveau studies another control problem that is related to a Monge-

Ampère equation. In our original control problem, we fix the quadratic variation

of the martingales, which corresponds to constraining the Frobenius norm of the

volatility matrix in the martingale representation (1.1). In the control problem in

[28], this constraint is replaced with a constraint on the determinant of the volatility

matrix. In Section 5.5, we will show how this problem is related to our original

control problem.

1.3 Outline of the thesis

In this thesis, we study control problems for martingales over two related control

sets. We give a PDE characterisation of these general problems and demonstrate

the relationship between them. Specialising to the case of a radially symmetric

environment, we give explicit solutions and prove further properties of the control

problems.

The main contributions of this thesis are the following:

1. We provide an explicit solution to a control problem for multidimensional

martingales with fixed quadratic variation in a radially symmetric environment

in Theorem 2.30, motivated by applications in robust finance.

2. We present two SDEs that do not admit a strong solution in Theorem 3.4 and

Theorem 3.15. The SDEs arise naturally from the above problem of stochastic

optimal control. Proving that a weak solution of the first SDE generates a

Brownian filtration allows us to complete the proof of Theorem 2.30. The

results on non-existence of strong solutions lead to Conjecture 3.5 that asserts

that there is a gap between a Markov formulation of the control problem and

a strong and weak formulation.

3. We characterise the value functions of two stochastic control problems in terms

of viscosity solutions of a Monge-Ampère equation in Theorem 5.24 and Corol-

lary 5.37. These control problems are equivalent to each other and related to

the first problem that we study, as shown in Theorem 5.40.

The thesis is organised as follows.

6



1.3. Outline of the thesis

1.3.1 Section 1.4: Preliminaries

In the remainder of this first chapter, we define the first stochastic control problem

that we will study, and we prove some preliminary properties of the value function.

We define both a strong and a weak formulation of the control problem. In Proposi-

tion 1.7 we show that, under certain assumptions, the weak and strong formulations

are equivalent, by referring to a result from El Karoui and Tan’s paper [20]. We show

that the value function is semiconvex in Lemma 1.11 and deduce that it is locally

Lipschitz in Corollary 1.13. We use this continuity property to prove directly that

the value function satisfies a dynamic programming principle in Proposition 1.17. In

Section 1.4.4 we introduce the HJB equation that will be key to solving the control

problem explicitly in Chapter 2.

1.3.2 Chapter 2: Stochastic control of martingales in a ra-

dially symmetric environment

In this chapter we study the control problem defined in Section 1.4.1 in a radially

symmetric environment. We construct a candidate for the value function explicitly.

For a continuous radially symmetric cost function with sufficient regularity at the

origin, we verify the candidate value function in Proposition 2.15 by showing that

it is a viscosity solution of an HJB equation with appropriate boundary condition.

This method of proof relies on Theorem 4.20, which shows that the value function is

the unique viscosity solution of the HJB equation with a given boundary condition.

We present the technical details of this theorem in Chapter 4.

To construct the value function, we reduce the problem to a one-dimensional

switching problem. We identify the optimal switching points and observe that the

principles of smooth and continuous fit are satisfied at these points, although the

usual rationale for smooth fit is not always applicable.

We find that the optimal process switches between two behaviour regimes: the

process either follows radial motion, moving as a Brownian motion on a line through

the origin, or tangential motion, moving on a tangent to the current position. The

latter behaviour results in a process with deterministically increasing radius. This

property has been exploited by Fernholtz, Karatzas and Ruf in [25] to solve a relative

arbitrage problem, as described in [41].

We extend the result of Proposition 2.15 to relax the regularity of the cost

function and allow the cost to become infinite at the origin. In Theorem 2.30,

we characterise the value function and determine under which growth conditions

the value remains finite. For a regime of moderate growth of the cost function in

7



1.3. Outline of the thesis

dimension d = 2, we require a result on Brownian filtrations from Chapter 3 in order

to complete the proof of Theorem 2.30. We also introduce a Markov formulation

of the control problem and show that this is equivalent to the strong and weak

formulations, with the possible exception of the moderate growth regime mentioned

above. We consider this growth regime in the following chapter.

1.3.3 Chapter 3: SDEs with no strong solution arising from

a problem of stochastic control

In this chapter, we present two SDEs that have no strong solution. Both of these

SDEs arise naturally from the control problem of the previous chapter in dimension

d = 2. We first consider an SDE describing tangential motion starting from the

origin. We show that a weak solution of this SDE generates a Brownian filtration

and use this to show that the strong value function is equal to the weak value

function in the regime of moderate growth of the cost function. This completes the

proof of Theorem 2.30 from the previous chapter.

In Theorem 3.4 we prove that this first SDE has no strong solution. This result

leads us to formulate Conjecture 3.5, which asserts that there is a gap between the

Markov value function and the strong and weak value functions at the origin in

the moderate growth regime. We go on to consider martingales that approximate

optimal behaviour in the sense that their associated value converges to the strong

value function. We show in Theorem 3.15 that the SDEs describing one such possible

approximating sequence also have no strong solution starting from the origin. This

supports Conjecture 3.5.

The proofs of these theorems adapt techniques used in the study of the example

of an SDE with no strong solution given by Tsirelson in [59]. In particular, we make

use of the properties of circular Brownian motion that Émery and Schachermayer

prove in their study of Tsirelson’s equation in [21].

1.3.4 Chapter 4: Viscosity solutions of Hamilton-Jacobi-

Bellman equations

The main result of this chapter is Theorem 4.20, which states that the value func-

tion defined in Section 1.4.1 is the unique viscosity solution of the associated HJB

equation with appropriate boundary condition. This is the result that is used to

find the explicit form of the value function in a radially symmetric environment in

Chapter 2.

8
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We follow standard arguments from Touzi’s book [58] to show that the value

function is a viscosity solution of the HJB equation. We establish uniqueness by

proving a comparison principle, as is typical in the theory of viscosity solutions of

PDEs. The standard proof of comparison for viscosity solutions given in Crandall,

Ishii and Lions’s User’s Guide [13] requires coercivity of the differential operator in

the zeroth derivative. Since coercivity does not hold for the HJB equation that we

are considering, we use the perturbation argument from Section 5.C of [13]. The

perturbation that we choose is the same as that suggested by Ishii and Lions for

proving comparison for a Monge-Ampère equation in [36]. In this way, we adapt the

standard proof of comparison to obtain a uniqueness result for the HJB equation

in Proposition 4.19. We conclude the proof of Theorem 4.20 by verifying that the

value function extends continuously to the boundary of the domain and satisfies the

boundary condition pointwise. Our argument is based on similar results to those

proved by Gaveau in [28] for a related control problem.

1.3.5 Chapter 5: Control problems related to a Monge-

Ampère equation

In this final chapter, we study two further control problems that are related to the

problem defined in Section 1.4.1. We show that the value function of each of these

problems solves a Monge-Ampère equation and deduce that the two problems are

equivalent.

First, we refer to the paper [24] where Feng and Jensen show that a Monge-

Ampère equation has an equivalent formulation as an HJB equation in the sense

of viscosity solutions. The stochastic control problem that is related to this HJB

equation is not discussed in [24], and so we study this problem here. The control

set is the same as for the problem defined in Section 1.4.1, but an additional cost is

introduced to penalise martingales whose diffusion matrix has a small determinant.

We show that the value function of this problem is the unique viscosity solution of

a Monge-Ampère equation with appropriate boundary condition.

We then consider the control problem that Gaveau studies in [28]. In this prob-

lem, the constraint that the controlled martingale must have fixed quadratic varia-

tion is replaced with a constraint on the determinant of the diffusion matrix. In [28],

Gaveau shows that the value function is a weak solution of a Monge-Ampère equa-

tion, but this result came prior to the introduction of viscosity solutions by Crandall

and Lions in their 1983 paper [14]. We make use of the modern theory of viscosity

solutions and prove that the value function is the unique viscosity solution of the

Monge-Ampère equation with appropriate boundary condition.

9
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Finally, in Theorem 5.40, we prove that the common value of the two problems

introduced in this chapter is bounded below by the value function of the problem

defined in Section 1.4.1. By means of examples, we show that equality may hold in

this bound, although the inequality is strict in some simple examples.

1.4 Preliminaries

In this section we formulate a stochastic control problem over continuous multidi-

mensional martingales with fixed quadratic variation. We prove preliminary results

on convexity and continuity of the value function. We then prove a dynamic pro-

gramming principle and heuristically derive the associated HJB equation.

1.4.1 Problem formulation

We now formulate the control problem precisely, as follows.

Fix d ∈ N. We introduce the control set

U :=
{
σ ∈ Rd,d : Tr(σσ>) = 1

}
.

Let D ⊂ Rd be a domain and define the functions f : D → R and g : ∂D → R, which

we call the running cost and boundary cost, respectively. We make the following

assumptions.

Assumption 1.1. Suppose that

1. The domain D is bounded;

2. The cost functions f and g are upper semicontinuous;

3. The running cost f is bounded above; i.e. f ≤M , for some M ≥ 0;

4. The boundary cost g is bounded above; i.e. g ≤ K for some K ≥ 0.

We introduce two variants of the control problem: a strong formulation and a

weak formulation. We will show in Proposition 1.7 that, under Assumption 1.1,

these two formulations are equivalent. We will relax our assumptions in Section 2.4

and show that this equivalence still holds. In Chapter 3, we will address a case

where the theory of weak solutions of SDEs and Brownian filtrations is needed to

prove the equivalence of weak and strong formulations.
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Strong formulation

The strong formulation of the control problem is to find the strong value function

vS : D → R, which we now define as in [58]. In order to define the value function,

we introduce the set of controls, which will be U -valued processes, and we describe

the dynamics of the controlled martingales via the stochastic integral (1.3) below.

Let (Ω0,F ,P0) be a probability space on which a d-dimensional Brownian motion

B is defined with natural filtration F = (Ft)t≥0.

Control: Define the set of controls

U := {U -valued F-progressively measurable processes} .

Dynamics: For any x ∈ D and ν = (νt)t≥0 ∈ U , define Xν by the stochastic

integral

Xν
t = x+

∫ t

0

νs dBs, t ≥ 0, (1.3)

and define the associated exit time from the domain by

τ := inf {t ≥ 0: Xν
t /∈ D} .

Example 1.2. Let σ : D → U be Lipschitz. Then there is a unique strong solution

Xσ of the SDE

dXt = σ(Xt) dBt, X0 = x.

Define νt = σ(Xσ
t ), for all t ≥ 0. Then ν ∈ U and, for any t ≥ 0, Xσ

t = x+
∫ t

0
νs dBs.

Notation. For a process Y starting from a point y and a functional F of the path

of Y , we denote the expectation with respect to the law of Y by

Ey [F (Y )] := E [F (Y )|Y0 = y] .

Value function: We define the strong value function vS : D → R by

vS(x) := inf
ν∈U

Ex
[∫ τ

0

f(Xν
s ) ds+ g(Xν

τν )

]
. (1.4)

Remark 1.3. Note that, for any ν ∈ U , the quadratic variation of a controlled

martingale Xν is given by

〈Xν〉t =

∫ t

0

Tr(νsν
>
s ) ds = t,

11
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for any t ≥ 0, by the definition of the control set U .

Definition 1.4. We say that a processX has unit quadratic variation if its quadratic

variation is given by

〈X〉t = t, for all t ≥ 0.

A martingale with unit quadratic variation has the property that the expected

exit time of the martingale from a ball is fixed. This gives a bound on the expected

exit time from the domain D as follows.

Notation. Let R > 0 and x ∈ Rd. We denote the d-dimensional open ball of radius

R centred at x by

BR(x) := {y ∈ Rd : |y − x| < R}.

For a given process X, we denote the first exit time from BR(0) by

τR := inf {t ≥ 0: Xt /∈ BR(0)} .

Proposition 1.5. Let X be a continuous martingale with initial condition X0 =

x ∈ D, and suppose that X has unit quadratic variation. Fix R > 0. Then

Ex[τR] = R2 − |x|2 .

Moreover, defining τ := inf {t ≥ 0: Xt /∈ D}, we have the bound

Ex[τ ] ≤ diam(D)2 − |x|2 <∞.

Proof. Applying Itô’s formula to |XτR |
2 and taking expectations, we find that

Ex
[
|XτR |

2]− |x|2 = Ex [〈X〉τR ] = Ex[τR],

since X is a martingale and has unit quadratic variation. Therefore, by continuity

of the paths of X, we have

Ex[τR] = R2 − |x|2 .

Now set R = diam(D) so that D ⊆ BR(x). Then the inequality τ ≤ τR holds

pointwise and, in particular,

Ex[τ ] ≤ Ex[τR] = diam(D)2 − |x|2 <∞,

as required.
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Weak formulation

We now introduce the weak formulation of the control problem, following El Karoui

and Tan in [20]. The problem is to find the weak value function vW : D → R,

which we define below. In the weak formulation, the controls will take values in a

set of probability measures, and the dynamics of the controlled martingales will be

described as solutions of a local martingale problem.

Define the space of continuous paths Ω := C([0,∞),Rd) and denote the set of

Borel measurable functions ν : R+ → U by B(R+, U). Then set Ω = Ω× B(R+, U)

and denote an element of Ω by ω = (ω, u). Define the canonical process X = (X, ν)

on Ω by Xt(ω) = ωt, for each t ≥ 0, and ν(ω) = u. We define the canonical filtration

as in [20]. For φ ∈ Cb(R+ × U), s ≥ 0, define

Ms(φ) :=

∫ s

0

φ(r, νr) dr.

Then define the canonical filtration F = (F t)t≥0 by

F t := σ {(Xs,Ms(φ)) : φ ∈ Cb(R+ × U), s ≤ t} , t ≥ 0.

Control: Let M be the set of probability measures on the set Ω. For each x ∈ D,

let

Mx = {P ∈M : P(X0 = x) = 1} .

Dynamics: For x ∈ D, define

Px := {P ∈Mx : t 7→ φ(Xt)− φ(X0)− 1

2

∫ t

0

Tr
(
D2φ(Xs)νsν

>
s

)
ds

is a (F,P)-local martingale for all φ ∈ C2(Rd)},

and let τ = inf {t ≥ 0: Xt /∈ D}.

Notation. For a process Y , a functional F of the path of Y , and a probability

measure P on path space, we denote the expectation with respect to P by

EP [F (Y )] .

Value function: Define the weak value function vW : D → R by

vW (x) = inf
P∈Px

EP
[∫ τ

0

f(Xs) ds+ g(Xτ )

]
.
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Remark 1.6. A measure P ∈ Px is a solution of a local martingale problem, as

defined in Definition 4.5 of [38, Chapter 5]. As shown in Problem 4.3 and Propo-

sition 4.6 of [38, Chapter 5], there is a correspondence between solutions of a local

martingale problem and weak solutions of an SDE. In our set up, a measure P ∈ Px
corresponds to a weak solution of the SDE (1.3) with initial distribution δx.

We will now show that, under Assumption 1.1, the weak and strong value func-

tions are equal, by refering to Theorem 4.5 of [20].

Proposition 1.7. Suppose that Assumption 1.1 holds. Then the weak and strong

formulations of the control problem are equivalent; i.e. vS = vW in D.

Proof. We apply Theorem 4.5 of [20], which gives conditions for equality of the weak

and strong value functions. Define a function Φ : Ω→ R by

Φ(ω) =

∫ τ(ω)

0

f(Xs(ω)) ds+ g(Xτ(ω)(ω)),

and fix x ∈ D. Then, by Theorem 4.5 of [20], it is sufficient to show that Φ is upper

semicontinuous and bounded above by some random variable ξ that is uniformly

integrable under the family of probability measures Px.
Under our assumptions, f : D → R and g : ∂D → R are upper semicontinuous

and so Φ is also upper semicontinuous.

Since we have also assumed that f and g are bounded above, we have the bound

Φ(ω) ≤Mτ(ω) +K =: ξ(ω).

Fix P ∈ Px and let (X, ν) have joint law P. Then the process X has unit quadratic

variation, and so by Proposition 1.5, we have the bound

EP[τ ] ≤ diam(D)2 − |x|2 .

Hence

EP[ξ] ≤M diam(D)2 − |x|2 +K <∞,

independently of the choice of measure P. Therefore ξ is uniformly integrable under

Px.
We apply Theorem 4.5 of [20] to conclude that vS(x) = vW (x).

With the result of Proposition 1.7 in hand, we will write v = vW = vS and

refer to v as the value function. We choose to work with the strong formulation of
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the control problem in the following chapters, unless we explicitly refer to the weak

formulation.

1.4.2 Dynamic programming principle

The approach that we take to solving the stochastic optimal control problem defined

above is to use a ‘guess and verify’ method. First, we conjecture an optimal strategy

for a particular problem. We then calculate the value associated to following this

strategy, as a function of the starting point of the controlled process. In this section,

we introduce the dynamic programming principle, which provides a necessary and

sufficient condition for a given function to be equal to the value function. The

dynamic programming principle is a key technique in the study of stochastic control

problems, as described, for example, by Fleming and Soner in Section 7 of [26,

Chapter III] and by Touzi in Section 3.2 of [58]. Also known as the Bellman principle,

the dynamic programming principle for stochastic optimisation problems dates back

to the 1952 work of Bellman in [6] and [7]. We will use the dynamic programming

principle in Example 2.1 and Example 2.6 of Chapter 2 to verify that a conjectured

optimal strategy is indeed optimal.

We will also use the dynamic programming principle to derive the HJB equation,

which is a nonlinear PDE that the value function must satisfy in a certain weak sense.

In Chapter 4, we will develop the theory of viscosity solutions and see that this is

the appropriate notion of weak solution in this context. Having proved uniquenss of

viscosity solutions, we will deduce in Theorem 4.20 that a given function is equal to

the value function if and only if it is a viscosity solution of the HJB equation with

appropriate boundary condition. In Section 2.3, we will find it convenient to use

this PDE characterisation to verify a candidate value function, rather than working

directly with the dynamic programming principle.

We now define the dynamic programming principle, following Touzi’s definition

of the classical dynamic programming principle in Section 3.2 of [58].

Suppose that we follow a suboptimal strategy ν ∈ U , starting from position

x ∈ D at time 0, up until a stopping time ρ. Consider the minimum expected cost

when starting from the position at time ρ, plus the cost accrued up until time ρ. We

expect this total cost to be greater than the minimum expected cost when starting

from position x at time 0. In the case that an optimal strategy exists and we choose

to follow this strategy, we would expect the above two quantities to be equal. This

means that we expect the value function v to satisfy the following principle.

Definition 1.8 (Dynamic programming principle). We say that a dynamic pro-

gramming principle holds for the value function v if, for any x ∈ D, and for any

15
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stopping time θ such that θ ∈ [0, τ ] almost surely, v satisfies

v(x) = inf
σ∈U

Ex
[∫ θ

0

f(Xσ
s ) ds+ v(Xσ

θ )

]
. (1.5)

Remark 1.9. If there exists an optimal control σ? ∈ U , then this is equivalent to

stating that

v(Xσ
t ) +

∫ t

0

f(Xσ
s ) ds is

a submartingale, for all σ ∈ U ,

a martingale, for σ = σ?.

There are many references in the literature where a dynamic programming princi-

ple is proved. For example, Bouchard and Touzi prove a weak dynamic programming

principle in [9] in a very general setup. A dynamic programming principle is also

proved in [26] and [58].

The usual difficulty in proving a dynamic programming principle is that the value

function is not necessarily continuous, as stated in [9]. However, in our case, we will

be able to show a priori that the value function is in fact continuous. We can then

exploit this property to prove the dynamic programming principle directly.

1.4.3 Proof of a dynamic programming principle

In this section, we give a direct proof of the dynamic programming principle (1.5)

for the value function defined in Section 1.4.1.

We first prove that the value function is semiconvex and hence locally Lips-

chitz. We say that a function is semiconvex if it can be transformed into a convex

function by the addition of a quadratic term. We give the following definition of

semiconvexity, as in Section 6.7 of [58].

Definition 1.10. Let λ > 0. We say that a function f : Rd → R is λ-semiconvex if

the function fλ : Rd → R, defined by

fλ(x) = f(x) +
λ

2
|x|2 , x ∈ Rd,

is convex.

Lemma 1.11. Suppose that Assumption 1.1 holds and the domain D is strictly

convex. Then v is 2M-semiconvex in D, where M ≥ 0 is such that f ≤M in D.

Proof. Let x0, x1 ∈ D. Consider a martingale starting from a point y on the straight

line connecting these two points; i.e. y = λx0 + (1− λ)x1 ∈ D, for some λ ∈ (0, 1).

Let ε > 0 and define the control σ? as follows.
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First, define the constant control

σ ≡ 1

|x1 − x0|

[
x1 − x0; 0; . . . ; 0

]
∈ U.

Let W be the first component of the Brownian motion B. Then, for t ≥ 0,

Xσ
t = y +

x1 − x0

|x1 − x0|
Wt.

Set σ?t = σ for t ≤ Hx0,x1 , where Hx0,x1 is the first hitting time of either x0 or x1.

The controlled process Xσ? runs as a Brownian motion on the line connecting the

points x0 and x1 until hitting one of these points.

For i ∈ {0, 1}, let σi,ε ∈ U satisfy

v(xi) > Exi
[∫ τ

0

f(Xσi,ε

s ) ds+ g(Xσi,ε

τ )

]
− ε.

After the first hitting time of x0 or x1, we set the controlled process to follow one

of these ε-optimal controls, choosing σ0,ε if the process hits x0 before x1, and σ1,ε

otherwise. By construction, we have that σ? ∈ U .

Let us write Hx0 for the first hitting time of x0 and Hx1 for the first hitting time

of x1. We can condition on the value of the controlled process at the hitting time

Hx0,x1 to find that

v(y) ≤ Ey
[∫ τ

0

f(Xσ?

s ) ds+ g(Xσ?

τ )

]
≤MEy[Hx0,x1 ] + Ex0

[∫ τ

0

f(Xσ0,ε

s ) ds

]
Py[Hx0 < Hx1 ]

+ Ex1
[∫ τ

0

f(Xσ1,ε

s ) ds

]
Py[Hx1 < Hx0 ] + Ey

[
g(Xσ?

τ )
]

= MEy[Hx0,x1 ] + Ex0
[∫ τ

0

f(Xσ0,ε

s ) ds+ g(Xσ0,ε

τ )

]
Py[Hx0 < Hx1 ]

+ Ex1
[∫ τ

0

f(Xσ1,ε

s ) ds+ g(Xσ1,ε

τ )

]
Py[Hx1 < Hx0 ]

< MEy[Hx0,x1 ] + v(x0)Py[Hx0 < Hx1 ] + v(x1)Py[Hx1 < Hx0 ] + 2ε,

using the upper bound on f and the definition of the ε-optimal controls σε,0 and

σε,1. Calculating that

Py[Hx0 < Hx1 ] = λ,
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and

Ey[Hx0,x1 ] = λ |y − x0|2 + (1− λ) |x1 − y|2

≤ λ |x0|2 + λ |y|2 + (1− λ) |x1|2 + (1− λ) |y|2

= λ |x0|2 + (1− λ) |x1|2 − |y|2 ,

we find that

v(y) < M
(
λ |x0|2 + (1− λ) |x1|2 − |y|2

)
+ λv(x0) + (1− λ)v(x1) + 2ε.

So, taking the limit as ε→ 0, we have

v(y) ≤M
(
λ |x0|2 + (1− λ) |x1|2 − |y|2

)
+ λv(x0) + (1− λ)v(x1).

Therefore

v(y) +M |y|2 ≤M
(
λ |x0|2 + (1− λ) |x1|2

)
+ λv(x0) + (1− λ)v(x1)

= λ
(
v(x0) +M |x0|2

)
+ (1− λ)

(
v(x1) +M |x1|2

)
.

This shows that the map x 7→ v(x) + M |x|2 is a convex function. Hence v is

2M -semiconvex, as required.

Remark 1.12. In particular, in the case that the cost function f is negative, we

have shown that the value function v is convex. An intuitive justification for this

is that, since it is favourable at any point x ∈ D to run on for a short time t, we

expect

Ex[v(Xt)] ≤ v(x) = v(Ex[Xt]),

by the martingale property of X. Appealing to Jensen’s inequality, this suggests

that v should be convex.

If f is bounded above by some M , then running on for a short time t has a cost

of at most Mt. By the unit quadratic variation condition, the process t 7→ |Xt|2− t
is a martingale, and so we expect

Ex[v(Xt) +M |Xt|2] = Ex[v(Xt)] +Mt

≤ v(x) = v(Ex[Xt])

≤ v(Ex[Xt]) +M |E[Xt]|2 ,

using the martingale property of X in the penultimate line. Referring again to

Jensen’s inequality, we then expect the map x 7→ v(x) +M |x|2 to be convex.

For unbounded f , there is no reason to expect any convexity result for v, as
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running on for even a short time could incur an unbounded cost.

Suppose now that v(x) > −∞ for all x ∈ D. Then Theorem 10.4 of [52] tells us

that when v is convex, v is locally Lipschitz. In fact, we will see that semiconvexity

is sufficient to show that v is locally Lipschitz in D.

Corollary 1.13. Suppose that Assumption 1.1 holds, D is strictly convex, and

v(x) > −∞ for all x ∈ D. Then v is locally Lipschitz in D.

Proof. By Lemma 1.11, we have that v is 2M -semiconvex in D, for M ≥ 0 such

that f ≤M in D; i.e. the function vM : Rd → R, defined by vM(x) = v(x) +M |x|2

is convex in D. Then, since the condition v > −∞ implies that vM > −∞, we can

apply Theorem 10.4 of [52] to see that vM is locally Lipschitz.

It is also known that x 7→ |x|2 is locally Lipschitz. Therefore, since

v(x) = vM(x)−M |x|2 , x ∈ D,

v is locally Lipschitz in D.

Remark 1.14. In the proof of continuity, we exclude the case where v takes the

value −∞ at some point. In this case, since we have a finite boundary condition,

we would not expect the value function to be continuous on the whole domain.

Remark 1.15. Touzi gives an intuitive justification of the dynamic programming

principle in Section 3.2.1 of [58], which we adapt here. We note that continuity

of the value function enables us to make this argument rigorous. In particular, we

know a priori that v is measurable and equal to its upper and lower semicontinuous

envelopes. Moreover, the value function does not depend on time, and is of the

form considered in Chapter 2 of [58] with coefficient k ≡ 0. These properties further

simplify the proof.

We now prove the dynamic programming principle under the following strength-

ening of Assumption 1.1.

Assumption 1.16. Suppose that Assumption 1.1 holds and, moreover, the domain

D is strictly convex and the value function v satisfies v(x) > −∞, for any x ∈ D.

Proposition 1.17. Suppose that Assumption 1.16 is satisfied. Then the following

dynamic programming principle holds.

For any x ∈ D and for any stopping time θ such that θ ∈ [0, τ ] almost surely, v

satisfies

v(x) = inf
ν∈U

Ex
[∫ θ

0

f(Xν
s ) ds+ v(Xν

θ )

]
. (1.5)
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Proof. Under the stated assumptions, we have that v is continuous by Corollary

1.13.

Define I : D × U → R by

I(x, ν) := Ex
[∫ τ

0

f(Xν
s ) ds+ g(Xν

τ )

]
,

for each x ∈ D and ν ∈ U , so that

v(x) = inf
ν∈U
I(x, ν).

Fix x ∈ D and ν ∈ U . Let θ be a stopping time such that θ ∈ [0, τ ] almost

surely, and fix ω ∈ Ω. By an argument similar to that in the proof of Proposition

5.4 of [9], there exists a control ν̃ω ∈ U such that

Ex
[∫ τ

0

f(Xν
s ) ds+ g(Xν

τ )
∣∣∣ Fθ(ω)

]
=

∫ θ(ω)

0

f(Xν
s ) ds+ I

(
Xν
θ(ω)(ω), ν̃ω

)
≥
∫ θ(ω)

0

f(Xν
s ) ds+ v

(
Xν
θ(ω)(ω)

)
.

Then, by the tower property for conditional expectation,

I(x, ν) ≥ Ex
[∫ θ

0

f(Xν
s ) ds+ v (Xν

θ ))

]
.

By Assumption 1.16 and Corollary 1.13, the functions f , g and v are measurable,

and so the above expressions are all well-defined. Taking the infimum over ν ∈ U
on both sides yields

v(x) ≥ inf
ν∈U

Ex
[∫ θ

0

f(Xν
s ) ds+ v(Xν

θ )

]
.

To prove the inequality in the other direction, fix an arbitrary µ ∈ U and ε > 0.

We wish to take νε ∈ U such that

I(Xνε

θ , ν
ε) ≤ v(Xνε

θ ) + ε,

and νε = µ on [0, θ]. However, it is not clear a priori that there exists such a νε that

has the required measurability properties. We will return to this issue of measurable

selection below.
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Supposing that we can take such a νε, then

v(x) ≤ I(x, νε) = Ex
[∫ θ

0

f(Xνε

s ) ds+ I(Xνε

θ , ν
ε)

]
≤ Ex

[∫ θ

0

f(Xµ
s ) ds+ v(Xµ

θ )

]
+ ε.

If we now take the supremum over all µ ∈ U and let ε→ 0, we get

v(x) ≤ inf
µ∈U

Ex
[∫ θ

0

f(Xµ
s ) ds+ v(Xµ

θ )

]
.

Since we know a priori that v is continuous, by Corollary 1.13, we are able to make

the required measurable selection argument directly. For any x ∈ D, continuity of

v implies that there exists δ(x) > 0 such that

v(x) ≥ v(y)− ε

3
, for all y ∈ Bδ(x)(x). (1.6)

Since D is open, we can choose δ(x) sufficiently small that

B
δ(x)

1
2
(x) ⊂ D.

Moreover, fix

c := sup
ξ∈D

Eξ[τ ],

and note that c ≤ diam(D)2 <∞, by Proposition 1.5. Now choose δ(x) sufficiently

small that

δ(x)
1
2 ≤ ε

3 [(c+ 2)M +K]
∧ 1. (1.7)

Note that we have the following open cover of D ⊂ Rd:

D ⊂
⋃
x∈D

Bδ(x)(x).

There is then a countable subcover given by

D ⊂
⋃
α∈N

Bδα(xα),

for points xα ∈ D and radii δα = δ(xα) > 0, indexed by α ∈ N.

Fix ω ∈ Ω. For t < θ(ω), let νεt (ω) = µt(ω). For t ≥ θ(ω), νεt must depend on

the position of the controlled process at the stopping time θ(ω), which we denote
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z := Xνε

θ(ω)(ω).

Since the set {Bδα(xα) : α ∈ N} is a countable cover of D, we have that z ∈
Bδα(xα), for some fixed α ∈ N. Let us denote δ = δα for convenience in what

follows, and define η := δ
1
2 .

Note that Bη(xα) ⊂ D, and define Hη to be the hitting time

Hη := inf{t ≥ θ : Xνε

t ∈ ∂Bη(xα) ∪ {xα}}.

Define

σ1 =
z − xα
|z − xα|

,

and let

σ =
[
σ1; 0; . . . ; 0

]
∈ Rd,d.

Set νεt (ω) = σ for t ∈ [θ(ω), Hη]. Then the controlled process Xνε moves on the

straight line connecting z to xα until either hitting xα or leaving the ball Bη(xα).

We now calculate the probability p of hitting xα before leaving the ball of radius

η. Define λ := |z − xα|. Then

xα = z − λσ1,

and the vector σ1 intersects the boundary of the ball of radius η at the point

y = z + (η − λ)σ1.

We now have

Xνε

Hη =

xα, with probability p,

y, with probability 1− p.

We can calculate the hitting probabilities

p =
η − λ
η

< 1 and 1− p =
λ

η
<
δ

η
= δ

1
2 , (1.8)

noting that λ = |z − xα| < δ. The expected hitting time is then

Ez[Hη] = (1− p)(η − λ)2 + pλ2

< (1− p)η2 + pλ2

< δη + δ2 = δ
3
2 + δ2.

(1.9)

The bound (1.7) on δ then implies that the process hits xα with high probability in

a short time.
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Let νε,α be an ε
3
-optimal strategy starting from xα, so that

I(xα, ν
ε,α) ≤ v(xα) +

ε

3
. (1.10)

If, at the hitting time Hη, we have Xνε

Hη
= xα, then set the controlled process Xνε

to follow the control νε,α from this time onwards. Otherwise set Xνε to follow the

constant control νεt = σ, for t ≥ Hη. We can then write

I(z, νε) = Ez
[∫ τ

0

f(Xνε

s ) ds+ g(Xνε

τ )

]
= Ez

[∫ Hη

0

f(Xσ
s ) ds

]
+ pExα

[∫ τ

0

f(Xνε,α

s ) ds+ g(Xνε,α

τ )

]
+ (1− p)Ey

[∫ τ

0

f(Xσ
s ) ds+ g(Xσ

τ )

]
.

We now bound this expression term by term. Making use of the estimate (1.9) on

Ez[Hη], along with the upper bound f ≤M from Assumption 1.16, we see that the

first term is bounded by

Ez
[∫ Hη

0

f(Xσ
s ) ds

]
≤MEz[Hη]

< M(δ
3
2 + δ2).

Using the estimate (1.8) on 1 − p, and the upper bounds f ≤ M and g ≤ K from

Assumption 1.16, we see that the final term is bounded by

(1− p)Ey
[∫ τ

0

f(Xσ
s ) ds+ g(Xσ

τ )

]
≤ (1− p) (MEy[τ ] +K)

< δ
1
2 (cM +K),

recalling that c = supξ∈D Eξ[τ ].

Combining the bounds on these terms, and using the fact that p < 1, we have

that

I(z, νε) < Exα
[∫ τ

0

f(Xνε,α

s ) ds+ g(Xνε,α

τ )

]
+M(δ

3
2 + δ2) + δ

1
2 (cM +K)

= I(xα, ν
ε,α) +M(δ

3
2 + δ2) + δ

1
2 (cM +K).

(1.11)

Now, by the bound (1.7),

M(δ
3
2 + δ2) + δ

1
2 (cM +K) < δ

1
2 [(c+ 2)M +K] ≤ ε

3
.
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Inserting this bound into inequality (1.11), together with the property of νε,α from

(1.10), we get

I(z, νε) < I(xα, ν
ε,α) +

ε

3

≤ v(xα) +
ε

3
+
ε

3
.

From the property of δ in (1.6), we also have that

v(xα) ≤ v(z) +
ε

3
,

since z ∈ Bδ(xα). Hence

I(z, νε) < v(z) + ε.

Note that the strategy νε defined in this way depends only on the index α, for

which Xθ(ω)(ω) ∈ Bδα(xα). Since the cover of D made up of balls of this form is

countable, we conclude that the strategy has the required measurability properties.

Having proved that the dynamic programming principle holds, we now go on to

derive the Hamilton-Jacobi-Bellman equation.

1.4.4 A Hamilton-Jacobi-Bellman equation

The control problem defined in Section 1.4.1 is associated to a second order PDE

known both as a Hamilton-Jacobi-Bellman (HJB) equation and a dynamic program-

ming equation, as described in Section 3.3 of [58] and in Section 7 of [26, Chapter

VII]. Specifically, we expect the value function v to satisfy the boundary value

problem −1
2

infσ∈U Tr
(
D2vσσ>

)
= f, in D,

v = g, on ∂D,
(1.12)

where D2v is the Hessian of v. The HJB equation in (1.12) is a fully nonlinear

degenerate elliptic PDE.

In general,we expect v to solve (1.12) in the viscosity sense, as defined in Chap-

ter 4. Here, we impose sufficient smoothness conditions on the value function v and

the running cost f such that v should be a classical solution of the HJB equation

in (1.12). We will demonstrate the subsolution property below and, under further

assumptions on the domain, we will show that the boundary condition is satisfied.

Notation. For a twice continuously differentiable function u : D → R, we denote
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the gradient Du and the Hessian D2u.

Suppose that Assumption 1.16 holds and, moreover, that v is twice continuously

differentiable and f is continuous. Under these conditions, we will show that the

value function v is a classical subsolution of the HJB equation in (1.12), following

the proof of Proposition 3.4 of [58].

Fix x ∈ D, let σ ∈ U and define Xσ to be the process following the constant

control that is equal to σ; that is

Xσ
t = x+ σBt, t ≥ 0.

Under the assumption that v is twice continuously differentiable, we can apply Itô’s

formula to find that

dv(Xσ
t ) = Dv(Xσ

t )σ dBt +
1

2
Tr
(
D2v(Xσ

t )σσ>
)

dt. (1.13)

Fix some δ > 0 such that Bδ(x) ⊂ D, define θ := inf {t ≥ 0: Xσ
t /∈ Bδ(x)}, and set

θh = θ ∧ h, for any h ≥ 0. Note that θh = h for all h sufficiently small.

Under Assumption 1.16, the dynamic programming principle (1.5) holds by

Proposition 1.17. Since v(Xσ
t ) satisfies (1.13), we have

Ex
[

1

h

∫ θh

0

(
1

2
Tr
(
D2v(Xσ

t )σσ>
)

+ f(Xσ
t )

)
dt

]
=

1

h
Ex
[
v(Xσ

θh
) +

∫ θh

0

f(Xσ
t ) dt

]
− v(x)

≥ 0,

where the inequality is a consequence of the dynamic programming principle (1.5).

We can then use the mean value theorem and the dominated convergence theorem

to take the limit as h→ 0. By continuity of f , we conclude that

1

2
Tr
(
D2v(x)σσ>

)
+ f(x) ≥ 0.

Taking the infimum over σ ∈ U , we have

− 1

2
inf
σ∈U

Tr
(
D2v(x)σσ>

)
− f(x) ≤ 0.

Hence v is a classical subsolution of the HJB equation in (1.12).

As noted by Touzi before Proposition 3.5 of [58], the proof that v is a superso-

lution is more technical, and we do not present a proof here. In Theorem 4.20, we

will prove that v is a viscosity solution of (1.12) under weaker conditions. In the
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case that v is twice continuously differentiable, this result implies that v is also a

classical solution.

We now show that, under additional assumptions on the domain, the boundary

condition is satisfied. In Section 4.5, we will show that the boundary condition

is satisfied under weaker conditions. We take the following definition of a regular

boundary point from Definition 9.2.8 of [46]. Define a process X on the domain D

and denote τ := inf{t > 0: X /∈ D}. We say that a point a ∈ ∂D is regular for X

if Pa[τ = 0] = 1.

Suppose that, for each control ν ∈ U , all points a ∈ ∂D are regular for the

controlled process Xν . Let a ∈ ∂D. Then

v(a) = inf
ν∈U

Ea
[∫ τ

0

f(Xν
s ) ds+ g(Xν

τ )

]
= inf

ν∈U
Ea [g(Xν

0 )] = g(a).

Therefore we have the boundary condition

v = g on ∂D.

In practice, we do not expect v to be continuously differentiable, even for continu-

ous cost functions f , so we cannot expect v to be a classical solution of the boundary

value problem (1.12). In Chapter 4, we introduce viscosity solutions, which are the

appropriate notion of weak solution for this context. We state the main theorem of

Chapter 4 here, as we will apply this theorem in the following chapter before giving

the proof.

Theorem 4.20. Suppose that Assumption 1.16 holds, and suppose further that the

domain D is uniformly convex, the running cost f is continuous in D, and the

boundary cost g is uniformly continuous on ∂D.

Then the value function v : D → R defined in Section 1.4.1 extends continuously

to D and is the unique viscosity solution of the HJB equation

− 1

2
inf
σ∈U

Tr
(
D2vσσ>

)
− f = 0

in D, with boundary condition

v = g on ∂D.

This theorem provides a necessary and sufficient condition for a candidate func-

tion to be equal to the value function.
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In Chapter 2, we make some additional assumptions on the structure of the

problem that allow us to find an explicit expression for the value function, using

Theorem 4.20 to prove optimality.
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CHAPTER 2

STOCHASTIC CONTROL OF MARTINGALES IN A

RADIALLY SYMMETRIC ENVIRONMENT

In a radially symmetric environment, we are able to find an explicit solution to

the control problem for martingales with unit quadratic variation. We construct

the value function by reducing the control problem to a one-dimensional switching

problem between two regimes, and we observe continuous and smooth fit properties

at the switching points. For continuous cost functions, we prove optimality by

referring to the theory of viscosity solutions for the associated Hamilton-Jacobi-

Bellman equation. We extend this result to cost functions that may become infinite

at the origin. We also introduce a Markov formulation of the control problem and

show that this is equivalent to the strong and weak formulations, with a possible

exception depending on the growth rate of the cost function at the origin.

2.1 Introduction

Let d ≥ 2 and R > 0. Define the domain to be the open ball about the origin with

radius R, which we denote D = BR(0) ⊂ Rd. Throughout this chapter, we work on

the domain D and consider cost functions f : D → R of the form

f(x) = f̃(|x|), x ∈ D,

for some f̃ : [0, R) → R. We call a function f of this form radially symmetric. In

this chapter, we consider the control problem defined in Section 1.4.1 for radially

symmetric cost functions f with a constant boundary cost g.

When f̃ is monotonically increasing, we will see that an optimal strategy is for
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the controlled process to run as a one-dimensional Brownian motion on the radius

that passes through the current position. We will define such a process as radial

motion in Definition 2.7.

On the other hand, when f̃ is monotonically decreasing, we will see that any

strategy under which the radius of the controlled process increases deterministically

is optimal. This behaviour can be achieved by choosing to move in a direction

orthogonal to the current position. Denoting by x> a vector orthogonal to x ∈
Rd \ {0} with the same magnitude, an example of such a process is a solution of the

SDE

dXt =
1

|Xt|

[
X>t ; 0; · · · ; 0

]
dBt. (2.1)

We will define this process as tangential motion in Definition 2.3. The fact that

solutions of the SDE (2.1) have deterministically increasing radius has been used,

for example, by Fernholz, Karatzas and Ruf in [25], and by Larsson and Ruf in [41],

to study a problem of relative arbitrage. In Proposition 3.21 we will derive a more

general form of SDE whose solutions exhibit the same property.

We will find that switching between the two regimes of radial motion and tan-

gential motion is optimal for a large class of radially symmetric cost functions. In

Section 2.3.1, we give a heuristic argument for reducing the control problem to a

one-dimensional switching problem for the radius process. By considering the gen-

erators of the radius processes corresponding to radial and tangential motion, we

find ODEs that the expected cost should solve under each of the two regimes. We

derive conditions for identifying the optimal switching points in Section 2.3.2. When

switching into the diffusive regime of radial motion, we impose a smooth fit condi-

tion. At the points of switching into the deterministic regime of tangential motion,

however, we only need to impose continuous fit. Nevertheless, these switching points

exhibit the smooth fit property. We discuss this phenomenon in Section 2.3.4.

In Section 2.3.3, we use the switching points that we have identified to solve

a system of ODEs and construct a candidate for the value function for a radially

symmetric cost function. Under regularity conditions on the cost function given in

Assumption 2.11, we prove optimality of the candidate value function in Proposi-

tion 2.15. In particular, we assume that the cost function is continuous, so Assump-

tion 1.1 is satisfied and the weak and strong value functions are equal by Propo-

sition 1.7. To verify that the value function is equal to our candidate, we show

that the candidate function is a viscosity solution of the Hamilton-Jacobi-Bellman

equation

− 1

2
inf
σ∈U

Tr
(
D2uσσ>

)
= f, in D,
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with boundary condition u = g on ∂D. We then appeal to Theorem 4.20 to see that

the value function is the unique viscosity solution of this boundary value problem

and is therefore equal to the candidate function. We will introduce the required

theory of viscosity solutions and prove Theorem 4.20 in Chapter 4.

In Section 2.4, we relax the regularity conditions on the cost function. In particu-

lar, we allow the cost function to become infinite at the origin. In this case, equality

between the weak and strong value functions is no longer guaranteed a priori. We

show in Theorem 2.30 that the weak and strong value functions do coincide and

take the same form as the candidate that we constructed in Section 2.3.3. We also

find growth conditions under which the value function remains finite while the cost

function becomes infinite. We identify a regime of moderate growth to infinity at

the origin where we require results on Brownian filtrations from Chapter 3 in order

to complete the proof of Theorem 2.30.

Finally, we introduce Markov controls in Section 2.5. We show that, under cer-

tain growth conditions on the cost function, the Markov formulation is equivalent to

the strong and weak formulations of the control problem. In the regime of moderate

growth mentioned above, we conjecture that there is a gap between the Markov

value function and the strong and weak value functions at the origin. This con-

jecture is based on the fact that (2.1) has a weak solution but no strong solution

starting from the origin. We prove this fact in Chapter 3, where we also discuss the

conjecture further.

We begin this chapter by considering two simple examples of minimising and

maximising the expected time spent in a ball about the origin.

2.2 Occupation times

Fix R > 0 so that the domain is D = BR(0) ⊂ Rd.

We first consider the following example of minimising the expected time spent

in a ball about the origin.

Example 2.1. Let ρ ∈ (0, R), define f : D → R by

f(x) =

0, |x| ≤ ρ,

−1, |x| ∈ (ρ,R),

and fix the boundary cost g ≡ 0.
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We seek the value function

v(x) = inf
σ∈U

Ex
[∫ τ

0

f(Xσ
s ) ds

]
= inf

σ∈U
Ex
[∫ τ

0

−1{|Xσ
s |∈(ρ,R)} ds

]
.

That is, we wish to maximise the expected time that the radius process |Xσ| spends

in the interval (ρ,R).

f = 0

f = −1
ρ

R
g ≡ 0

Figure 2.1: Cost function for Example 2.1

Since the problem is radially symmetric, we expect the value function v to depend

only on the radius. In fact, in this example and the example that follows, it will

be convenient to work with the squared radius of any controlled process. We now

derive an SDE for this squared radius process.

Lemma 2.2. Let x ∈ D, σ ∈ U , and define Xσ by the stochastic integral

Xσ
t = x+

∫ t

0

σs dBs, t ≥ 0.

Define the squared radius process Zσ by Zσ
t := |Xσ

t |
2, t ≥ 0. Then Zσ satisfies the

SDE

dZσ
t = 2X>t σt dBt + dt, (2.2)

with initial condition Zσ
0 = |x|2.

Proof. We apply Itô’s formula to the function g : D → R defined by g(x) = |x|2, for
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all x ∈ D. For any t > 0, Itô’s formula gives

dZσ
t = dg(Xt) = Dg(Xt)

> dXt +
1

2
Tr(D2g(Xt)σtσ

>
t ) dt

= 2X>σt dBt + Tr(σtσ
>
t ) dt

= 2X>σt dBt + dt,

using the constraint that σt ∈ U .

We conjecture that, at the boundary {x ∈ D : |x| = ρ}, any optimal control

for Example 2.1 must enforce motion tangential to this internal boundary. We now

define a process that exhibits this behaviour.

Definition 2.3 (Tangential motion). For x ∈ D \ {0}, define

σ0(x) :=
1

|x|

[
x⊥; 0; · · · ; 0

]
∈ Rd,d, (2.3)

where x⊥ denotes any x ∈ Rd \ {0} such that x>x⊥ = 0. Fix x ∈ D \ {0} and

suppose that Xσ0
is a strong solution of the SDE

dXt = σ0(Xt) dBt, X0 = x.

For t ≥ 0, define

σ0
t := σ0(Xσ0

t ),

so that

Xσ0

t = x+

∫ t

0

σ0
s dBs.

We say that the process Xσ0
follows tangential motion.

Note that σ0(0) is not defined. We investigate the existence of a process following

tangential motion at the origin in Chapter 3.

For σ0 defined in Definition 2.3, we can find a formula for the squared radius

process Zσ0
via Lemma 2.2, as follows.

Lemma 2.4. Suppose that Xσ0
follows tangential motion, as defined in Defini-

tion 2.3, with Xσ0

0 = x 6= 0. Then the radius process is deterministically increasing

and, for any t ≥ 0,

Zσ0

t =
∣∣∣Xσ0

t

∣∣∣2 = |x|+ t.
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Proof. For t ≥ 0, provided that
∣∣∣Xσ0

t

∣∣∣ 6= 0, we see that

(
Xσ0

t

)>
σ0
t =

1∣∣Xσ0

t

∣∣
[(
Xσ0

t

)> (
Xσ0

t

)⊥
, 0, . . . , 0

]
=
[
0, . . . , 0

]
.

Therefore, by Lemma 2.2, Zσ0
satisfies

dZσ0

t = dt.

Let ξ = |x|2 6= 0, so that Zσ0

0 = ξ. Then Zσ0
is the deterministically increasing

process given by

Zσ0

t = ξ + t,

for t ≥ 0.

As a consequence of the above lemma, supposing that Xσ0

0 6= 0, we have that∣∣∣Xσ0

t

∣∣∣ > 0 for all t ≥ 0. Therefore the control σ0 is well-defined when starting

away from the origin. Note that, for d ≥ 3, a control of this form is not unique,

since the orthogonal vector in the definition of σ0 can be chosen as any element of

a (d− 1)-dimensional subspace.

The observation that the process Xσ0
has deterministically increasing radius was

made by Fernholtz, Karatzas and Ruf in Section 6.2 of [25] and again by Larsson

and Ruf in Section 4.2 of [41], where they consider a problem of relative arbitrage.

In Figure 2.2, we show a simulated trajectory of a process following tangential

motion in dimension d = 2. We note that a similar simulation is produced in Figure

2 of [41].

Figure 2.2: A sample path of a process (Xσ0

t )t≥0 following tangential motion in
dimension d = 2 and its radius

Having defined tangential motion and proved a key property of this process, we
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now construct a candidate for the value function in Example 2.1.

Fix ξ ≥ ρ2. Then we conjecture that the control σ0 defined in Definition 2.3 is

optimal, and we compute the expected cost

Ex
[∫ τ

0

−1{|Xσ0
s |∈(ρ,R)} ds

]
= Eξ

[∫ τ

0

−1{Zσ0s ∈(ρ2,R2)} ds

]
= −

∫ ∞
0

1{s∈(0,R2−ξ)} ds

= −
∫ R2−ξ

0

ds

= ξ −R2.

Now suppose that ξ < ρ2. This includes the case where the process starts at the

origin, where the control σ0 is not well-defined. However, since the cost is zero in

the ball {x ∈ Rd : |x| < ρ}, we will see that any strategy is optimal in this region.

For a fixed r ∈ (
√
ξ, ρ) and an arbitrary σ ∈ U , define the control σ? by

σ?t =

σt,
∣∣Xσ?

t

∣∣ < r,

σ0
t ,

∣∣Xσ?

t

∣∣ ∈ [r, R).

Then we compute the expected cost

Ex
[∫ τ

0

−1{|Xσ?
s |∈(ρ,R)} ds

]
= Eξ

[∫ τ

0

−1{Zσ?s ∈(ρ2,R2)} ds

]
= Er2

[∫ τ

0

−1{Zσ0s ∈(ρ2,R2)} ds

]
= −

∫ ∞
r2−ξ

1{s∈(ρ2−ξ,R2−ξ)} ds

= −
∫ R2

ρ2
ds

= ρ2 −R2.

This calculation gives us a conjecture for the value function in Example 2.1.

Using the Itô-Tanaka formula, we will show that our candidate function satisfies

a dynamic programming principle, as described in Section 1.4.2, and we can then

deduce that this function must be the value function.
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Proposition 2.5. Let w : [0, R2)→ R be defined by

w(ξ) =

ρ2 −R2, ξ ≤ ρ2,

ξ −R2, ξ ∈ (ρ2, R2),

and define v : D → R by v(x) = w(|x|2), for x ∈ D. Then the value function for

Example 2.1 is given by v = v.

Figure 2.3: A possible trajectory for an optimal strategy in Example 2.1

Proof. We first show that v satisfies the form of the dynamic programming principle

given in Remark 1.9.

Define f̃ : [0, R2)→ R by

f̃(ξ) = −1{ξ∈(ρ2,R2)}, ξ ∈ [0, R2),

so that

f(x) = f̃(|x|), x ∈ D.

We seek to prove that w(Zσ
t ) +

∫ t
0
f̃(Zσ

s ) ds is a submartingale for all σ ∈ U , and

that w(Zσ?

t ) +
∫ t

0
f̃(Zσ?

s ) ds is a martingale for an optimal strategy σ? ∈ U .

Let σ ∈ U . We note that w is not continuously differentiable at ξ = ρ2, so we

apply the Itô-Tanaka formula to write down an SDE for w(Zσ
t ). Recall that the
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Itô-Tanaka formula, given for example in Theorem 1.5 of [51, Chapter VI] states

that, for all t ≥ 0,

w(Zσ
t )− w(ξ) =

∫ t

0

w′−(Zσ
s ) dZσ

s +
1

2

∫ R2

0

Lσ,at w′′(da),

where

– w′− is the left derivative of w, which exists everywhere;

– w′′(da) is the distributional derivative of w′−; i.e. the measure on R such that,

for all ξ ∈ [0, R2),

w′−(ξ) =

∫ ξ

−∞
w′′(da);

– Lσ,at is the local time spent at a by the process Zσ up to time t.

We calculate that

w′−(ξ) =

0, for ξ ≤ ρ2,

1, for ξ ∈ (ρ2, R2),

and

w′′(da) = δρ2(a).

Hence, by the Itô-Tanaka formula,

w(Zσ
t )− w(ξ) =

∫ t

0

1{Zσs >ρ2} dZσ
s +

1

2
Lσ,ρ

2

t

= 2

∫ t

0

1{Zσs >ρ2}X
>
s σs dBs +

∫ t

0

1{Zσs >ρ2} ds+
1

2
Lσ,ρ

2

t ,

and so

w(Zσ
t )− w(ξ) +

∫ t

0

f̃(Zσ
s ) ds = 2

∫ t

0

1{Zσs >ρ2}X
>
s σs dBs +

∫ t

0

1{Zσs >ρ2} ds

+
1

2
Lσ,ρ

2

t −
∫ t

0

1{Zσs >ρ2} ds

= 2

∫ t

0

1{Zσs >ρ2}X
>
s σs dBs +

1

2
Lσ,ρ

2

t .

(2.4)

Since local time is always non-negative, we have shown that

w(Zσ
t ) +

∫ t

0

f̃(Zσ
s ) ds
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is a submartingale for any σ ∈ U .

Now we note that, for any σ ∈ U ,

v(Xσ
τ ) = w(Zσ

τ ) = w(R2) = 0,

by continuity of the paths of Xσ. Therefore, we can use the submartingale property

and the optional sampling theorem to find that

Ex
[∫ τ

0

f(Xσ
s ) ds

]
= Ex

[∫ τ

0

f(Xσ
s ) ds+ v(Xσ

τ )

]
= Eξ

[∫ τ

0

f̃(Zσ
s ) ds+ w(Zσ

τ )

]
≥ w(ξ) = v(x).

Now, supposing that ξ 6= 0, consider the control σ? = σ0, so that Zσ?

t = ξ + t,

for any t ≥ 0. For ξ ∈ (0, ρ2], we have

Eξ
[
−
∫ τ

0

1{Zσ?s ∈(ρ2,R2)} ds

]
= −

∫ ∞
0

1{s∈(ρ2−ξ,R2−ξ)} ds

= ρ2 −R2 = w(ξ).

For ξ ∈ (ρ2, R2), we have

Eξ
[
−
∫ τ

0

1{Zσ?s ∈(ρ2,R2)} ds

]
= −

∫ τ

0

1{Zσ?s ∈(ξ,R2)} ds

= −
∫ ∞

0

1{s∈(0,R2−ξ)} ds

= ξ −R2 = w(ξ).

In the case that ξ = 0, fix r ∈ (0, ρ) and σ ∈ U , and take

σ?t =

σt,
∣∣Xσ?

t

∣∣ < r,

σ0
t ,

∣∣Xσ?

t

∣∣ ∈ [r, R).

Then

E0

[
−
∫ τ

0

1{Zσ?s ∈(ρ2,R2)} ds

]
= Er

[
−
∫ τ

0

1{Zσ?s ∈(ρ2,R2)} ds

]
= −

∫ ∞
0

1{s∈(ρ2−ξ,R2−ξ)} ds

= R2 − ρ2 = w(0).
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We conclude that, for any x ∈ D,

v(x) = inf
σ∈U

Ex
[∫ τ

0

f(Xσ
s ) ds

]
= v(x).

Hence the conjectured function v is indeed the value function.

We now turn to a second example of maximising the expected time spent in a

ball around the origin.

Example 2.6. Fix ρ ∈ (0, R), define the cost f : D → R by

f(x) =

−1, |x| < ρ

0, |x| ∈ [ρ,R),

and fix the boundary cost g ≡ 0. We seek the value function

v(x) = inf
σ∈U

Ex
[∫ τ

0

f(Xσ
s ) ds

]
= inf

σ∈U
Ex
[∫ τ

0

−1{|Xσ
s |<ρ} ds

]
.

That is, we wish to maximise the expected time that the martingale spends in the

ball Bρ(0).

f = −1

f = 0
ρ

R
g ≡ 0

Figure 2.4: Cost function for Example 2.6

We propose that an optimal strategy is to run as a Brownian motion on the

radius of the domain. We now define a process that follows this strategy.
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2.2. Occupation times

Definition 2.7 (Radial motion). Define a function σ1 : D → R by

σ1(x) =


1
|x|

[
x; 0; · · · ; 0

]
, x 6= 0,[

e1; 0; · · · ; 0
]
, x = 0,

(2.5)

where e1 is the unit vector in the first coordinate direction. Fix x ∈ D and define

σ1 to be the constant control given by σ1
t = σ(x), for all t ≥ 0. Define Xσ1

by

Xσ1

t = x+

∫ t

0

σ1
s dBs = x+ σ1(x)Bt, t ≥ 0.

We say that the process Xσ1
follows radial motion.

A simulated trajectory of a process following radial motion, along with the sample

path of its radius, is shown in Figure 2.5.

Figure 2.5: A sample path of a process (Xσ1

t )t≥0 following radial motion in dimension
d = 2 and its radius

Let W be the first component of B, and note that W is a one-dimensional

Brownian motion. Then, defining σ1 as in Definition 2.7, we see that, for x 6= 0,

Xσ1

t = x+

∫ t

0

σ1
s dBs = x+Wt

x

|x|
,

and, for x = 0,

Xσ1

t = Wte1.

Hence
∣∣∣Xσ1

t

∣∣∣ = ||x|+Wt|, and so

Ex
[∫ τ

0

−1{|Xσ1
t |<ρ}

]
= E|x|

[
−
∫ τR

0

1{Wt∈(−ρ,ρ)}

]
,
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2.2. Occupation times

where τR = inf {t ≥ 0: |Wt| = R}.
We can compute this expected cost by using the Green’s function for one-

dimensional Brownian motion, using the results that we summarise in Appendix B,

as follows.

The scale function s and speed measure m, as defined in Definition B.1 and

Definition B.3 respectively, are given by

s(y) = y − c, y ∈ R,

for some constant c ∈ R, and ∫
m(dy) = 2

∫
dy.

Hence the Green’s function G on the interval [−ρ, ρ], as defined in Definition B.4,

is given by

G(r, y) =


(y+R)(R−r)

2R
, y ≤ r,

(r+R)(R−y)
2R

, y ≥ r.

We can now apply Proposition B.5, which tells us that

E|x|
[
−
∫ τR

0

1{Wt∈(−ρ,ρ)}

]
= −

∫ ρ

−ρ
G(|x| , y)m(dy).

For |x| ≥ ρ, we calculate

−
∫ ρ

−ρ
G(|x| , y)m(dy) = −R− |x|

R

∫ ρ

−ρ
(y +R) dy

= 2ρ |x| − 2ρR,

and, for |x| < ρ,

−
∫ ρ

−ρ
G(|x| , y)m(dy) = −R− |x|

R

∫ |x|
−ρ

(y +R) dy

− |x|+R

R

∫ ρ

|x|
(R− y) dy

=
R− |x|
R

(
1

2

(
ρ2 − |x|2

)
−R |x| − ρR

)
+
|x|+R

R

(
1

2

(
ρ2 − |x|2

)
+R |x| − ρR

)
= |x|2 + ρ2 − 2ρR.
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2.2. Occupation times

This gives us a candidate for the value function in Example 2.6. Again, we present

this function in terms of the radius squared. We can then apply Itô’s formula, using

the SDE for the squared radius process that we derived in Lemma 2.2.

Proposition 2.8. Let w : [0, R2)→ R be defined by

w(ξ) =

ξ + ρ2 − 2ρR, ξ ≤ ρ2,

2ρξ
1
2 − 2ρR, ξ ∈ (ρ2, R2),

and define v : D → R by v(x) = w(|x|2), for x ∈ D. Then the value function for

Example 2.6 is given by v = v.

Notation. Throughout this thesis, I denotes the d-dimensional identity matrix.

Proof of Proposition 2.8. Again we will show that v satisfies the form of the dynamic

programming principle given in Remark 1.9.

Note first that w is continuously differentiable and twice piecewise continuously

differentiable, with

w′(ξ) =

1, ξ ≤ ρ2,

ρξ−
1
2 , ξ ∈ (ρ2, R2),

and

w′′(ξ) =

0, ξ ≤ ρ2,

−1
2
ρξ−

3
2 , ξ ∈ (ρ2, R2).

Hence we can apply Itô’s formula to w(Zσ
t ), for any σ ∈ U , recalling that Zσ

t = |Xσ
t |

2.

Let Zσ
0 = ξ ∈ [0, R2). Then, for t > 0,

w(Zσ
t )− w(ξ) =

∫ t

0

1{Zσs ≤ρ2} dZσ
s + ρ

∫ t

0

1{Zσs ∈(ρ2,R2)}(Z
σ
s )−

1
2 dZσ

s

− ρ

4

∫ t

0

1{Zσs ∈(ρ2,R2)}(Z
σ
s )−

3
2 d〈Zσ〉s.

(2.6)

Substituting in the SDE (2.2) for Zσ, we find that there is a square-integrable
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2.2. Occupation times

martingale Mσ such that

w(Zσ
t )− w(ξ) =

∫ t

0

dMσ
s +

∫ t

0

1{Zσs ≤ρ2} ds+ ρ

∫ t

0

1{Zσs ∈(ρ2,R2)}(Z
σ
s )−

1
2 ds

− ρ
∫ t

0

1{Zσs ∈(ρ2,R2)}(Z
σ
s )−

3
2 Tr

(
Xσ
sX

σ
s
>σsσ

>
s

)
ds

=

∫ t

0

dMσs−
∫ t

0

f(Xσ
s ) ds

+ ρ

∫ t

0

1{|Xσ
s |∈(ρ,R)} |Xσ

s |
−3 Tr

([
|Xσ

s |
2 I −Xσ

sX
σ
s
>]σsσ>s ) ds.

Noting that the matrix |x|2 I − xx> is positive semi-definite for any x ∈ Rd, we see

that the final integral in the above equation is always non-negative, and so

v(Xσ
t ) +

∫ t

0

f(Xσ
s ) ds

is a submartingale for any σ ∈ U .

Now take σ = σ1 and let W be the first component of the Brownian motion B.

Then from the SDE (2.2) for the squared radius process, we see that Z := Zσ1
is a

one-dimensional squared Bessel process satisfying

dZt = 2
√
Zt dWt + dt.

Substituting this SDE for Z into our calculation (2.6), and defining X := Xσ1
, we

find that there is a square-integrable martingale M such that, for any t > 0,

w(Zt)− w(ξ) =

∫ t

0

dMs +

∫ t

0

1{Zs≤ρ2} ds+ ρ

∫ t

0

1{Zs∈(ρ2,R2)}Z
− 1

2
s ds

− ρ

4

∫ t

0

1{Zs∈(ρ2,R2)}Z
− 3

2
s · 4Zs ds

=

∫ t

0

dMs −
∫ t

0

f(Xs) ds.

Hence v(Xt) +
∫ t

0
f(Xs) ds is a martingale.

By the optional sampling theorem, we see that, for any σ ∈ U and x ∈ D,

v(x) ≤ Ex
[
v(Xσ

τ ) +

∫ τ

0

f(Xσ
s ) ds

]
= w(R2) + Ex

[∫ τ

0

f(Xσ
s ) ds

]
= Ex

[∫ τ

0

f(Xσ
s ) ds

]
,

42



2.2. Occupation times

by the submartingale property. Similarly, by the martingale property for X = Xσ1
,

v(x) = Ex
[∫ τ

0

f(Xs) ds

]
.

Therefore

v(x) = inf
σ∈U

Ex
[∫ τ

0

f(Xσ
s ) ds

]
,

as required.

For the step cost functions considered above, optimal controls involve tangential

and radial motion, as defined in Definition 2.3 and Definition 2.7, respectively. In the

next section, we will show that the controls corresponding to tangential and radial

motion are optimal for sufficiently smooth monotone cost functions. We will apply

the results from the above examples to find the value functions for these monotone

costs.

2.2.1 Examples with monotone costs

For a sufficiently smooth cost function f : D → R, and for any x ∈ D, we can write

f(x) = f̃(|x|) =

∫ |x|
0

f̃ ′(r) dr

=

∫ R

0

1{|x|≥r}f̃
′(r) dr,

(2.7)

expressing the cost in terms of an indicator function. When the cost function is also

monotone, we can then apply the results from Example 2.1 and Example 2.6 to find

the value function, as we show in the following results.

We first show that radial motion is optimal for increasing costs.

Proposition 2.9. Suppose that f̃ is a continuously differentiable increasing function

with f̃(0) = 0. Then the control σ1, as defined in Definition 2.7, is optimal and the

value function v is given by

v(x) = Ex
[∫ τ

0

f
(
Xσ1

s

)
ds

]
+ g = 2

∫ R

|x|

∫ r

0

f̃(s) ds dr + g, x ∈ D.

Proof. Fix x ∈ D and r ∈ (0, R). Note first that, as shown in Proposition 1.5,

Ex[τ ] = R2 − |x|2 for any σ ∈ U .

From Proposition 2.8, we know that the control σ1 is optimal for an increasing
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step function, and so for any σ ∈ U ,

Ex
[∫ τ

0

1{|Xσ
s |≥r} ds

]
= Ex[τ ] + Ex

[∫ τ

0

−1{|Xσ
s |<r} ds

]
≥ Ex[τ ] + inf

ν∈U
Ex
[∫ τ

0

−1{|Xν
s |<r} ds

]
= inf

ν∈U
Ex
[∫ τ

0

1{|Xν
s |≥r} ds

]
= Ex

[∫ τ

0

1{|Xσ1
s |≥r} ds

]
.

(2.8)

Since f̃ is continuously differentiable, we can write f as in (2.7). Therefore, for any

σ ∈ U ,

Ex
[∫ τ

0

f(Xσ
s ) ds

]
= Ex

[∫ τ

0

∫ R

0

1{|Xσ
s |≥r}f̃

′(r) dr ds

]
=

∫ R

0

f̃ ′(r)Ex
[∫ τ

0

1{|Xσ
s |≥r} ds

]
dr,

using the fact that f̃ ′ is bounded to exchange the order of integration. Now, since

f̃ ′ ≥ 0, the inequality (2.8) yields

Ex
[∫ τ

0

f(Xσ
s ) ds

]
≥
∫ R

0

f̃ ′(r)Ex
[∫ τ

0

1{|Xσ1
s |≥r} ds

]
dr

= Ex
[∫ τ

0

f̃
(∣∣∣Xσ1

s

∣∣∣) ds

]
.

This shows that

v(x) =

∫ R

0

f̃ ′(r)Ex
[∫ τ

0

1{|Xσ1
s |≥r} ds

]
dr + g

=
(
R2 − |x|2

)
f̃(R) +

∫ R

0

f̃ ′(r)Ex
[∫ τ

0

−1{|Xσ1
s |<r} ds

]
dr + g.

Substituting in the value function from Proposition 2.8, we calculate that

v(x) =
(
R2 − |x|2

)
f̃(R)− 2R

∫ R

0

rf̃ ′(r) dr + 2 |x|
∫ |x|

0

rf̃ ′(r) dr

+ |x|2
(
f̃(R)− f̃(|x|)

)
+

∫ R

|x|
r2f̃ ′(r) dr + g.

(2.9)
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We can apply integration by parts to get

− 2R

∫ R

0

rf̃ ′(r) dr = −2R2f̃(R) + 2R

∫ R

0

f̃(r) dr,

and

2 |x|
∫ |x|

0

rf̃ ′(r) dr = 2 |x|2 f̃(|x|)− 2 |x|
∫ |x|

0

f̃(r) dr.

Now applying integration by parts twice, we see that∫ R

|x|
r2f̃ ′(r) dr = R2f̃(R)− |x|2 f̃(|x|)− 2

∫ R

|x|
rf̃(r) dr

= R2f̃(R)− |x|2 f̃(|x|)− 2R

∫ R

0

f̃(r) dr + 2 |x|
∫ |x|

0

f̃(r) dr

+ 2

∫ R

|x|

∫ r

0

f̃(s) ds dr.

On substituting these expressions back into our calculation of the value function in

(2.9), all but one of the terms cancel and we find that

v(x) = 2

∫ R

|x|

∫ r

0

f̃(s) ds dr + g,

as required.

We now show that, away from the origin, tangential motion is optimal for de-

creasing costs. We exclude the origin here, since we have not found a control starting

from the origin that is optimal for all values of ρ in Example 2.1. In Section 2.3,

when we treat more general radially symmetric costs, we will be able to find the

value function at the origin. We will address the issue of the existence of optimal

strategies starting from the origin in detail in Chapter 3.

Proposition 2.10. Suppose that f̃ is a continuously differentiable decreasing func-

tion with f̃(0) = 0. Then the control σ0, as defined in Definition 2.3, is optimal

away from the origin, and the value function v is given by

v(x) = Ex
[∫ τ

0

f
(
Xσ0

s

)
ds

]
+ g = 2

∫ R

|x|
rf̃(r) dr + g, x ∈ D \ {0}.

Proof of Proposition 2.10. Fix x ∈ D \ {0} and r ∈ (0, R). By Proposition 2.5, we
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know that σ0 is optimal for a decreasing step function. Therefore, for any σ ∈ U ,

Ex
[∫ τ

0

1{|Xσ
s |≥r} ds

]
≥ inf

ν∈U
Ex
[∫ τ

0

1{|Xν
s |≥r} ds

]
= Ex

[∫ τ

0

1{|Xσ0
s |≥r} ds

]
.

And so, similarly to the previous example, we can calculate that for any σ ∈ U ,

Ex
[∫ τ

0

f̃(|Xσ
s |) ds

]
=

∫ R

0

f̃ ′(r)Ex
[∫ τ

0

1{|Xσ
s |≥r} ds

]
dr

≥
∫ R

0

f̃ ′(r)Ex
[∫ τ

0

1{|Xσ0
s |≥r} ds

]
dr

= Ex
[∫ τ

0

f̃
(∣∣∣Xσ0

s

∣∣∣) ds

]
,

where we use the fact that f̃ ′ ≤ 0. Hence

v(x) =

∫ R

0

f̃ ′(r)Ex
[∫ τ

0

1{|Xσ0
s |≥r} ds

]
dr + g

= −
∫ R

0

f̃ ′(r)Ex
[∫ τ

0

−1{|Xσ0
s |≥r} ds

]
dr + g.

Substituting in the value function from Proposition 2.5, we calculate that

v(x) =
(
R2 − |x|2

)
f̃(|x|) +

∫ R

|x|

(
R2 − r2

)
f̃ ′(r) dr + g

= R2f̃(R)− |x|2 f̃(|x|)−
∫ R

|x|
r2f̃ ′(r) dr + g.

Applying integration by parts, this simplifies to

v(x) = 2

∫ R

|x|
rf̃(r) dr + g,

as required.

We have seen that, for smooth increasing costs, the control σ1 which enforces

radial motion is always optimal, and for smooth decreasing costs, the control σ0

which enforces tangential motion is optimal everywhere except at the origin. In

the following sections, we will show that, for a continuous radially symmetric cost

function with sufficient regularity, an optimal control is to switch between radial

and tangential motion.
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2.3 Explicit solution in the general case

In this section, we consider the control problem for more general radially symmetric

cost functions, removing the restriction of monotonicity. We make the ansatz that

the optimal strategy is to switch between two extreme behaviours in the control

set, namely the strategies of tangential and radial motion defined in Definition 2.3

and Definition 2.7, respectively. In this way, we reduce the control problem to

a one-dimensional optimal switching problem for the radius process. We use the

principles of smooth and continuous fit to identify the optimal switching points, and

we provide an algorithm to construct a candidate for the value function. We are

able to write this function explicitly in Definition 2.14. We refer to the theory of

viscosity solutions that we develop in Chapter 4 in order to verify that the candidate

function is equal to the value function.

We make the following assumptions.

Assumption 2.11. Suppose that

1. The domain is D = BR(0) ⊂ Rd, for some R > 0 and d ≥ 2;

2. The cost function f is radially symmetric; i.e. f(x) = f̃(|x|), for some function

f̃ : [0, R)→ R;

3. The boundary cost g is constant;

4. The cost function f is continuous;

5. There exists η > 0 such that the cost function f̃ is monotone on the interval

(0, η);

6. The one-sided derivative f̃ ′+(r) exists for all r > 0 and changes sign only finitely

many times;

7. There exists δ > 0 such that f̃ is continuously differentiable on (0, δ) and

limr→0 rf̃
′(r) = 0.

Remark 2.12. In Section 2.4, we will relax the fourth condition on continuity and

the seventh condition on differentiability.

We rule out the case that the cost function oscillates at the origin by imposing

the fifth condition on monotonicity. We will see in the following sections that the

fifth and sixth conditions allow us to find an optimal strategy that switches between

two regimes finitely many times. We believe that we would still be able to solve the

control problem explicitly if we relax the fifth and sixth conditions, but in this case
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an optimal strategy may not exist. To simplify our exposition, we do not treat this

case here.

Recall the definitions of the functions σ0 in (2.3) and σ1 in (2.5), which are

associated to tangential and radial motion, respectively.

We conjecture that, in the case that f̃ is increasing at the origin, there exists a

sequence of points 0 = s0 < r1 < s1 < . . . < R such that an optimal control is of

the form

σ?t =


σ1
(
Xσ?

0

)
,
∣∣Xσ?

t

∣∣ ∈ [0, r1),

σ0
(
Xσ?

t

)
,
∣∣Xσ?

t

∣∣ ∈ [ri, si], i ≥ 1,

σ1
(
Xσ?

τsi

)
,
∣∣Xσ?

t

∣∣ ∈ (si, ri+1), i ≥ 1,

(2.10)

where, for each i ≥ 1, we define the hitting time

τsi := inf
{
t ≥ 0:

∣∣Xσ?

t

∣∣ = si
}
.

Note that t 7→
∣∣Xσ?

t

∣∣ is deterministically increasing when
∣∣Xσ?

t

∣∣ ∈ [ri, si], for any

i ≥ 1, by Lemma 2.2. Therefore, if
∣∣Xσ?

0

∣∣ ≥ r1,
∣∣Xσ?

t

∣∣ ≥ r1 for all t ≥ 0.

Similarly, if f̃ is decreasing at the origin, we conjecture that there is a sequence

of points 0 = r0 < s0 < r1 < . . . < R such that an optimal control is of the form

σ?t =


σ0
(
Xσ?

t

)
,
∣∣Xσ?

t

∣∣ ∈ (0, s0],

σ1
(
Xσ?

τsi

)
,
∣∣Xσ?

t

∣∣ ∈ (si−1, ri), i ≥ 1,

σ0
(
Xσ?

t

)
,
∣∣Xσ?

t

∣∣ ∈ [ri, si], i ≥ 1.

(2.11)

Note that, in this second case, we do not make any claim about the optimal be-

haviour at the origin. Since σ0(0) is not defined, we will require some approxima-

tion at the origin in this case. We explore this further in Section 2.4 where we relax

Assumption 2.11.

In either case, we conjecture that, at any time, an optimally controlled process

should follow either radial motion or tangential motion, depending only on the

current radial position of the process. We present a simulated trajectory of such

a controlled process for an example with two switching points in Figure 2.6. In

Proposition 2.15, we will prove that the control σ? is optimal.
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Figure 2.6: A sample path of an optimal controlled process in a case with two
switching points

2.3.1 Reduction to a switching problem

Before beginning to construct a candidate for the value function, we give the fol-

lowing justification for our conjecture that switching between radial motion and

tangential motion should be optimal. We will work with the radius of the controlled

process in this section. We now derive an SDE for the radius process under some

simplifying assumptions.

Proposition 2.13. Let σ ∈ U be of the form

σt =
[
σt; 0; . . . ; 0

]
,

where σt ∈ Rd with |σt| = 1, for t ≥ 0. Let x ∈ D \ {0} and suppose that Xσ solves

the SDE

dXσ
t = σt dBt,

with initial condition Xσ
0 = x.

Set r0 := |x|, let ε ∈ (0, r), and define

τε := inf
{
t > 0:

∣∣Rλ
t − r0

∣∣ = ε
}
.
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Then there exists a [0, 1]-valued process λ such that |Xσ
t | = Rλ

t , where Rλ solves the

SDE

dRλ
t = λt dWt +

1− λ2
t

2Rλ
t

dt, Rλ
0 = r0,

on the interval [0, τε], for a one-dimensional Brownian motion W .

Proof. Let W be the first component of the Brownian motion B. Then the process

Xσ solves

dXσ
t = σt dWt,

with Xσ
0 = x. Considering t ∈ [0, τε], so that Xσ

t 6= 0, we can apply Itô’s formula to

find that the radius of Xσ satisfies the SDE

d|Xσ
t | = |Xσ

t |
−1 (Xσ

t )>σt dWt+
1

2
|Xσ

t |
−3 Tr

([
|Xσ

t |
2 I −Xσ

t (Xσ
t )>
]
σtσ

>
t

)
dt. (2.12)

Now let (Xσ
t )⊥ denote the vector with norm

∣∣(Xσ
t )⊥
∣∣ = |Xσ

t | that is orthogonal

to the vector Xσ
t and satisfies

σt = |Xσ
t |
−1 (λtXσ

t + µt(X
σ
t )⊥
)
, (2.13)

for some λt, µt ∈ R. Using the condition |σt| = 1, we see that

1 = λ2
t + µ2

t ,

and so λt ∈ [0, 1] and µt =
√

1− λ2
t .

Substituting the expression (2.13) for σt back into the SDE (2.12) for |Xσ|, and

repeatedly using the identities (Xσ
t )>Xσ

t = |Xσ
t |

2 and (Xσ
t )>(Xσ

t )⊥ = 0, we have

d|Xσ
t | = λt dWt +

1

2
|Xσ

t |
−1 (1− λ2

t

)
dt.

Therefore, writing Rλ
t = |Xσ

t |, where λt is defined via (2.13), we arrive at the desired

form of the SDE

dRλ
t = λt dWt +

1− λ2
t

2Rλ
t

dt.

Now, suppose further that the process λ in the proof of Proposition 2.13 takes

the form

λt = λ(Rλ
t ), t ≥ 0.

Then we can write down the infinitesimal generator Lλ for the process Rλ as

Lλu(r) = −1

2
λ2(r)u′′(r)− 1− λ2(r)

2r
u′(r),
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for r ∈ (r0 − ε, r0 + ε) and any smooth function u ∈ C2((r0 − ε, r0 + ε),R).

Consider the following simplification of the control problem. Restrict the control

set to contain only those controls that give rise to a process λ of the form specified

above. Let vR : D → R be the value function of this simplified problem. By radial

symmetry, we can write

vR(x) = ṽR(|x|),

for some ṽR : [0, R) → R. Supposing that ṽR is twice continuously differentiable,

we expect ṽR to be a classical solution of a Hamilton-Jacobi-Bellman equation, as

described in Section 1.4.4. By the results of Section 3.3 of [58], ṽR should solve

inf
λ
LλṽR = f̃ ,

in the interval (r0 − ε, r0 + ε), where the infimum is taken over functions λ : (r0 −
ε, r0 + ε)→ [0, 1].

Note that we can rewrite the generator as

LλṽR(r) = − 1

2r
(ṽR)′(r)− r

2
λ2(r)

[
1

r
(ṽR)′(r)

]′
.

Hence, at points r such that
[

1
r
(ṽR)′(r)

]′
> 0, the infimum is attained for λ(r) = 1,

while at points r such that
[

1
r
(ṽR)′(r)

]′
< 0, the infimum is attained for λ(r) = 0.

At a point r such that
[

1
r
(ṽR)′(r)

]′
= 0, the infimum is attained for any value

λ(r) ∈ [0, 1].

Returning to the expression for σ in terms of λ in (2.13), we see that setting

λt = 1 gives σt =
Xσ
t

|Xσ
t |

, with generator L1 given by

L1u(r) = −1

2
u′′(r). (2.14)

Note that, away from the origin, a controlled process following this control has the

same behaviour as radial motion, as defined in Definition 2.7. On the other hand,

λ = 0 corresponds to tangential motion, as defined in Definition 2.3, with generator

L0u(r) = − 1

2r
u′(r). (2.15)

Therefore the above calculations support our claim that the optimal strategy should

be to switch between these two behaviour regimes.

We note that, in the above discussion, we restricted the control set and made

the strong assumption that the value function is twice continuously differentiable.
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In order to prove that the behaviour described above is in fact optimal without

these restrictions, we will need to refer to the theory of viscosity solutions for HJB

equations that we develop in Chapter 4.

We now identify the conjectured optimal switching points and construct a can-

didate for the value function, before proving optimality in Proposition 2.15.

2.3.2 Optimal switching points

With the justification of the previous section, we make the ansatz that the optimal

strategy is of the form described in (2.10) or in (2.11). We now seek to find the

optimal switching points ri and si.

We will find that we require continuous fit and a condition on the first derivative

to fix the points ri, and we will need to impose smooth fit and a condition on the

second derivative to fix the points si. It is interesting to note that smooth fit also

holds at the points ri, although we do not enforce it.

Under the conjectured optimal behaviour, the value function is of the form

v(x) = ṽ(|x|), x ∈ D,

for some ṽ : [0, R) → R. To identify the optimal switching points, we will assume

that ṽ is differentiable in the interval (0, R) and satisfies the boundary condition

ṽ(R) = g. Then, for any r ∈ (0, R), we have

ṽ(r) = g −
∫ R

r

ṽ′(s) ds.

When we verify our candidate for the value function in Proposition 2.15, we will

show that v is in fact continuously differentiable in D and attains the boundary

condition v = g on ∂D.

By definition of the value function, the expected cost associated to any admissible

control at some radius r ∈ (0, R) is greater than the value ṽ(r). Therefore the

derivative of such an expected cost at some r ∈ (0, R) must be less than the derivative

of the value function ṽ′(r). We will use this observation to determine the optimal

switching points.

Let Ṽ : [0, R] → R and define a candidate value function V : D → R by

V (x) = Ṽ (|x|) for x ∈ D. The first step in constructing this function V is to find

the optimal switching points, as follows.

Suppose that there exists some i ≥ 1 such that 0 < si−1 < ri < R. Then we

expect that the optimal control switches from tangential motion to radial motion
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at the point si−1. In some interval (s, si−1), we set Ṽ = wi−1, where wi−1 solves the

ODE

L0wi−1(r) = −2rf̃(r),

and L0 is the generator associated to tangential motion that is defined in (2.15).

This ODE is equivalent to the first order ODE

w′i−1(r) = −2rf̃(r).

In the interval (si−1, ri), we set Ṽ = ui, where ui solves the ODE

L1ui(r) = f̃(r),

and L1 is the generator associated to radial motion that is defined in (2.14). We

can write this ODE as

u′′i (r) = −2f̃(r).

We fix the boundary conditions

ui(si−1) = wi−1(si−1), and u′i+(si−1) = w′i−1(si−1) = −2si−1f̃(si−1),

to define ui uniquely.

Now, in the interval (ri, si ∧ R), we suppose that tangential motion is optimal

and set Ṽ = wi, where wi solves the first order ODE

w′i(r) = −2rf̃(r).

We then have the following free boundary problem:
Ṽ ′′(r) = −2f̃(r), r ∈ (si−1, ri),

Ṽ ′(r) = −2rf̃(r), r ∈ (ri, si ∧R),

Ṽ (ri+) = Ṽ (ri−),

(2.16)

where the point ri is to be found. Note that we require the continuous fit condition

at ri in order to solve the first order ODE in (ri, si ∧R).

As noted above, we determine the switching point by comparing the derivatives

of ui and wi. The point ri should be the first point at which w′i(r) = −2rf̃(r) is
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greater than the first derivative of ui. Therefore we define ri by

ri := inf

{
r > si−1 : si−1f̃(si−1) +

∫ r

si−1

f̃(s) ds > rf̃(r)

}
.

That is the first point after si−1 at which the running average of the cost function

becomes greater than its current value. Note that this point cannot be in a region

where f̃ is increasing and so ri is greater than or equal to the first point of decrease

of f̃ after si−1.

In Figure 2.7b, we show an example of choosing the switching point r1 by com-

paring derivatives. We see in Figure 2.7a that, for this example, the switching point

r1 is strictly greater than the turning point at which the cost function starts to

decrease. Also note that, although we have only imposed continuous fit at the point

r1, we can see in Figure 2.7b that the derivatives are equal at r1. For any continuous

cost function, this smooth fit property arises in the same way; we will discuss this

in detail in Section 2.3.4.

Let us now suppose that si < R. We suppose that, in the interval (si, ri+1 ∧R),

radial motion is once again optimal, and we set Ṽ = ui+1, where ui+1 solves the

second order ODE

u′′i+1(r) = −2f̃(r).

Then we have a second free boundary problem

Ṽ ′(r) = −2rf̃(r), r ∈ (ri, si),

Ṽ ′′(r) = −2f̃(r), r ∈ (si, ri+1 ∧R),

Ṽ (si+) = Ṽ (si−),

Ṽ ′+(si) = Ṽ ′−(si),

(2.17)

where the point si is to be found. Here we require both smooth fit and continuous fit

at the point si in order to solve the second order ODE in the interval (si, ri+1 ∧R).

Having imposed the smooth fit condition Ṽ ′+(si) = Ṽ ′−(si), the first derivatives

of solutions of w′i(r) = −2rf̃(r) and u′′i+1(r) = −2f̃(r) are equal for any choice of si.

In order to fix the point si, we require a second order condition. Recall from As-

sumption 2.11 that we assume that the right derivative of f̃ exists everywhere. This

allows us to define si to be the first point at which u′′i+1(r) = −2f̃(r) is greater than

the one-sided second derivative from the right of the solution of w′i(r) = −2rf̃(r).

Thus there is an interval of positive length on which the first derivatives are in this

same order.
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(a) Radial part of the cost function f̃(r) = sin r

(b) First derivatives of the expected costs u1, w1, and u2

(c) Second derivatives of the expected costs u1, w1, and u2

Figure 2.7: The first two switching points r1, s1 are shown for the cost function
f(x) = sin |x|. The switching point r1 is the first point at which w′1(r) = −2rf̃(r)
exceeds u′1, where u1 solves u′′1(r) = −2f̃(r), with u1

′
+(0) = 0, as shown in (b). The

switching point s1 is the first point after r1 at which u′′2 = −2f̃ exceeds w′′1 , as shown
in (c). Fixing u′2(s1) = w′1(s1), we see in (b) that s1 is chosen such that u′2 remains
greater than w′1 over an interval of positive length.

We can calculate the one-sided second derivative from the right of wi as

w′′i +(r) = −2f̃(r)− 2rf̃ ′+(r).

This leads us to define si by

si := inf
{
s > ri : f̃

′
+(s) > 0

}
.

In this case, the switching point is exactly the turning point at which f̃ starts to

increase. For the example in Figure 2.7, we can see that the switching point s1

does indeed coincide with this turning point. Figure 2.7c shows how this switching

55



2.3. Explicit solution in the general case

point is chosen by comparing second derivatives, and Figure 2.7b shows that the

first derivatives at this point have the desired properties.

Note that the sixth condition of Assumption 2.11 implies that there are finitely

many switching points si and thus finitely many points ri. Taking the above defini-

tions of ri and sj for all values of i, j such that ri, sj < R, we now solve the ODEs

in (2.16) and (2.17) to construct a candidate for the value function.

2.3.3 Construction of the value function

In this section we construct the candidate function V , which we will go on to prove

is equal to the value function. We break the construction down into two cases

depending on the behaviour of the cost function at the origin, and then into two

further sub-cases depending on the behaviour of the cost function at the boundary

of the domain.

Case I: Increasing cost at the origin

Suppose first that f̃ is increasing on the interval (0, η). We summarise the construc-

tion of the candidate value function in this case in Algorithm 1.

Fix s0 = 0. Since we expect the optimal control to enforce radial motion in the

ball Bη(0), we solve the second order ODE

u′′1(r) = −2f̃(r), r ∈ (0, R).

We require two boundary conditions in order to uniquely define the solution u1. We

impose the boundary condition u1
′
+(0) = 0 for the following reasons.

First, from the discussion in the previous section, we recall that we will define

the first switching point to be

r1 = inf
{
r > 0: u′1(r) < −2rf̃(r)

}
,

since we are seeking to maximise the derivative of the candidate value function.

Therefore, for r ∈ (0, r1), we must have u′1(r) ≥ −2rf̃(r) and, in particular

u1
′
+(0) = lim

r↓0
u′1(r) ≥ −2 lim

r↓0
rf̃(r) = 0.

To get the opposite inequality, fix δ ∈ (0, η) and r ∈ (0, δ) and apply Itô’s formula
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Algorithm 1 Construction of the value function in Case I

Define s0 = 0.
Solve u′′1(r) = −2f̃(r), with u1

′
+(0) = 0, u1(0) = α, for some α ∈ R.

Define r1 := inf
{
r > 0:

∫ r
0
f̃(s) ds > rf̃(r)

}
.

Set Ṽ = u1 on (0, r1 ∧R].
if r1 < R then

for i ≥ 1 do
Solve w′i(r) = −2rf̃(r), with wi(ri) = ui(ri).

Define si := inf
{
r > ri : f̃

′
+(s) > 0

}
.

Set Ṽ = wi on (ri, si ∧R].
if si ≥ R then

break
end if
Solve u′′i+1(r) = −2f̃(r), with u′i+1(si+) = −2sif̃(si) and

ui+1(si) = wi(si).

Define ri+1 := inf
{
r > si : sif̃(si) +

∫ r
si
f̃(s) ds > rf̃(r)

}
.

Set Ṽ = ui+1 on (si, ri+1 ∧R].
if ri+1 ≥ R then

break
end if

end for
end if
Fix α such that Ṽ (R) = g.

to u1(δ) = u1

(∣∣∣Xσ1

τδ

∣∣∣) to see that

u1(δ)− u1(r) = Er
[
u1

(∣∣∣Xσ1

τδ

∣∣∣)]− u1(r)

=
1

2
Er
[∫ τδ

0

u′′1

(∣∣∣Xσ1

s

∣∣∣) ds

]
= −Er

[∫ τδ

0

f̃
(∣∣∣Xσ1

s

∣∣∣) ds

]
.

Then, applying dominated convergence to take the limit as r ↓ 0, and using the fact

that f̃ is increasing, we have that

lim
r↓0

1

δ
(u1(δ)− u1(r)) = −1

δ
E0

[∫ τδ

0

f̃
(∣∣∣Xσ1

s

∣∣∣) ds

]
≤ −1

δ
f̃(0)E0[τδ]

= −δf̃(0).

Hence

0 ≤ u1
′
+(0) ≤ − lim

δ↓0
δf̃(0) = 0.
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As well as imposing the above condition on the first derivative, we also fix an

arbitrary value u1(0) = α ∈ R. Having constructed the candidate value function, up

to this arbitrary constant, on the whole domain, we will use the external boundary

condition Ṽ (R) = g to determine the value of α. We now have

u1(r) = α− 2

∫ r

0

∫ s

0

f̃(t) dt ds.

Define

r1 := inf

{
r > 0:

∫ r

0

f̃(s) ds > rf̃(r)

}
,

and set Ṽ (r) = u1(r) for r ∈ (0, r1 ∧R].

If r1 < R, we then expect the optimal control to switch to enforcing tangential

motion. Therefore we solve the first order ODE

w′1(r) = −2rf̃(r), r ∈ (r1, R).

In order to uniquely define the solution w1, we impose the continuous fit condition

w1(r1) = Ṽ (r1). Then we have

w1(r) = Ṽ (r1)− 2

∫ r

r1

sf̃(s) ds

= α− 2

∫ r

r1

sf̃(s) ds− 2

∫ r1

0

∫ s

0

f̃(t) dt ds.

Now define

s1 := inf
{
r > r1 : f̃ ′+(r) > 0

}
,

and set Ṽ (r) = w1(r) for r ∈ (r1, s1 ∧R].

If s1 < R, then we expect the optimal control to switch back to enforcing radial

motion, and so we solve the second order ODE

u′′2(r) = −2f̃(r), r ∈ (s1, R).

At this point, we impose both the continuous fit condition u2(s1) = Ṽ (s1) and the

smooth fit condition u2
′
+(s1) = Ṽ ′(s1) in order to uniquely define u2. We then find

that

u′2(r) = Ṽ ′(s1)− 2

∫ r

s1

f̃(s) ds,
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and so

u2(r) = Ṽ (s1) + (r − s1)Ṽ ′(s1)− 2

∫ r

s1

∫ s

s1

f̃(t) dt ds

= α− 2

∫ r

s1

∫ s

s1

f̃(t) dt ds− 2

∫ r1

0

∫ s

0

f̃(t) dt ds

− 2

∫ s1

r1

sf̃(s) ds− 2(r1 − s1)r1f̃(r1).

Defining

r2 := inf

{
r > s1 : s1f̃(s1) +

∫ r

s1

f̃(s) ds > rf̃(r)

}
,

we set Ṽ (r) = u2(r) for r ∈ (s1, r2 ∧R].

We continue in this way until reaching the boundary of the domain, setting

Ṽ (r) =

ui(r), r ∈ (si−1, ri ∧R],

wi(r), r ∈ (ri, si ∧R],

for each i ≥ 1.

Fixing i ≥ 2, for r ∈ (si−1, ri ∧R], we calculate that

ui(r) = wi−1(si−1) + (r − si−1)w′i−1(si−1)− 2

∫ r

si−1

∫ s

si−1

f̃(t) dt ds

= ui−1(ri−1)− 2

∫ si−1

ri−1

sf̃(s) ds

− 2(r − si−1)si−1f̃(si−1)− 2

∫ r

si−1

∫ s

si−1

f̃(t) dt ds.

Noting that

u1(r1) = α− 2

∫ r1

0

∫ s

0

f̃(t) dt,

we calculate recursively that

ui(r) = α− 2

∫ r1

0

∫ s

0

f̃(t) dt ds+ 2(ri − r)si−1f̃(si−1) + 2

∫ ri

r

∫ s

si−1

f̃(t) dt ds

− 2
i∑

j=2

[
(rj − sj−1)sj−1f̃(sj−1) +

∫ sj−1

rj−1

sf̃(s) ds+

∫ rj

sj−1

∫ s

sj−1

f̃(t) dt ds

]
.

(2.18)
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Now, for r ∈ (ri, si ∧R], we calculate that

wi(r) = ui(ri)− 2

∫ r

ri

sf̃(s) ds

= wi−1(si−1)− 2(ri − si−1)si−1f̃(si−1)− 2

∫ ri

si−1

∫ s

si−1

f̃(t) dt ds

− 2

∫ r

ri

sf̃(s) ds.

We note that

w1(s1) = u1(r1)− 2

∫ s1

r1

sf̃(s) ds

= α− 2

∫ r1

0

∫ s

0

f̃(t) dt ds− 2

∫ s1

r1

sf̃(s) ds,

and calculate recursively that

wi(r) = α− 2

∫ r1

0

∫ s

0

f̃(t) dt ds− 2

∫ r

ri

sf̃(s) ds

− 2
i∑

j=2

[
(rj − sj−1)sj−1f̃(sj−1) +

∫ rj

sj−1

∫ s

sj−1

f̃(t) dt ds+

∫ sj−1

rj−1

sf̃(s) ds

]
.

(2.19)

In order to determine the value of α, we use the boundary condition on ∂D.

Let K ∈ N be such that R ∈ (sK−1, sK ]. We consider the following two sub-cases,

depending on the behaviour at the boundary.

Radial motion at the boundary: Suppose that R ∈ (sK−1, rK ]. Then we expect

radial motion to be optimal close to the boundary of the domain, and we have

Ṽ (r) = uK(r) for r ∈ (sK−1, R].

Imposing the boundary condition V (x) = g for x ∈ ∂D, we have uK(R) = g.

Setting i = K and r = R in (2.18), we find that

g = α− 2

∫ r1

0

∫ s

0

f̃(t) dt ds+ 2(rK −R)sK−1f̃(sK−1) + 2

∫ rK

R

∫ s

sK−1

f̃(t) dt ds

− 2
K∑
j=2

[
(rj − sj−1)sj−1f̃(sj−1) +

∫ rj

sj−1

∫ s

sj−1

f̃(t) dt ds+

∫ sj−1

rj−1

sf̃(s) ds

]
.

We can now substitute the value of α into (2.18) and (2.19) to find closed form
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expressions for the values

ui(r) = 2(ri − r)si−1f̃(si−1) + 2

∫ ri

r

∫ s

si−1

f̃(t) dt ds

+ 2
K∑

j=i+1

[
(rj − sj−1)sj−1f̃(sj−1) +

∫ sj−1

rj−1

sf̃(s ds) +

∫ rj

sj−1

∫ s

sj−1

f̃(t) dt

]

− 2(rK −R)sK−1f̃(sK−1)− 2

∫ rK

R

∫ s

sK−1

f̃(t) dt ds+ g,

for r ∈ (si−1, ri ∧R], i = 1, . . . , K, and

wi(r) = 2

∫ si

r

sf̃(s) ds+ 2(R− sK−1)sK−1f̃(sK−1) + 2

∫ R

sK−1

∫ s

sK−1

f̃(t) dt ds+ g

+ 2
K−1∑
j=i+1

[
(rj − sj−1)sj−1f̃(sj−1) +

∫ sj

rj

sf̃(s) ds+

∫ rj

sj−1

∫ s

sj−1

f̃(t) dt

]
,

for r ∈ (ri, si], i = 1, . . . , K − 1.

Tangential motion at the boundary: Now suppose that R ∈ (rK , sK ], so that

we expect tangential motion to be optimal close to the boundary of the domain.

Then we have Ṽ (r) = wK(r) for r ∈ (rK , R].

Imposing the boundary condition V (x) = g for x ∈ ∂D, we have wK(R) = g.

Setting i = K and r = R in (2.19), we find that

g = α− 2

∫ r1

0

∫ s

0

f̃(t) dt ds− 2

∫ R

rK

sf̃(s) ds

− 2
K∑
i=2

[
(ri − si−1)si−1f̃(si−1) +

∫ si−1

ri−1

sf̃(s) ds+

∫ ri

si−1

∫ s

si−1

f̃(t) dt ds

]
.

Having found the value of α, we can substitute this into (2.18) and (2.19) to find

closed form expressions for the values

ui(r) = 2(ri − r)si−1f̃(si−1) + 2

∫ ri

r

∫ s

si−1

f̃(t) dt ds+ 2

∫ R

rK

sf̃(s) ds+ g

+ 2
K∑

j=i+1

[
(rj − sj−1)sj−1f̃(sj−1) +

∫ sj−1

rj−1

sf̃(s) ds+

∫ rj

sj−1

∫ s

sj−1

f̃(t) dt ds

]
,
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for r ∈ (si−1, ri], i = 1, · · · , K, and

wi(r) = 2

∫ si

r

sf̃(s) ds− 2

∫ sK

R

sf̃(s) ds+ g

+ 2
K∑

j=i+1

[
(rj − sj−1)sj−1f̃(sj−1) +

∫ sj

rj

sf̃(s) ds+

∫ rj

sj−1

∫ s

sj−1

f̃(t) dt ds

]
,

for r ∈ (ri, si ∧R], i = 1, · · · , K.

We summarise the candidate value function in Definition 2.14 below.

Case II: Decreasing cost at the origin

We now turn to the second case where f̃ is decreasing on the interval (0, η). We

summarise the construction of the candidate value function in this case in Algo-

rithm 2.

Algorithm 2 Construction of the value function in Case II

Define r0 = 0.
Solve w′0(r) = −2rf̃(r), with w0(r) = α, for some α ∈ R.

Define s0 := inf
{
r > 0: f̃ ′+(r) > 0

}
.

Set Ṽ = w0 on (0, s0 ∧R].
if s0 < R then

for i ≥ 0 do
Solve u′′i+1(r) = −2f̃(r), with u′i+1(si+) = −2sif̃(si) and

ui+1(si) = wi(si).

Define ri+1 := inf
{
r > si : sif̃(si) +

∫ r
si
f̃(s) ds > rf̃(r)

}
.

Set Ṽ = ui+1 on (si, ri+1 ∧R].
if ri+1 ≥ R then

break
end if
Solve w′i+1(r) = −2rf̃(r), with wi+1(ri+1) = ui+1(ri+1).

Define si+1 := inf
{
r > ri+1 : f̃ ′+(r) > 0

}
.

Set Ṽ (R) = g on (ri+1, si+1 ∧R].
if si+1 ≥ R then

break
end if

end for
end if
Fix α such that Ṽ (R) = g.

We expect the optimal control to enforce tangential motion in Bη(0) \Bε(0), for

any ε ∈ (0, η). As we will see in Section 2.4, it will be possible to define a control
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at the origin whose cost approximates the cost associated to tangential motion.

Without further justification here, we fix r0 = 0 and seek the solution w0 to the first

order ODE

w′0(r) = −2rf̃(r), r ∈ (0, R).

Note that this ODE fixes the first derivative and, in particular, w1
′
+(0) = 0.

In order to uniquely define w1, we need to impose one boundary condition. As in

the previous section, we will fix an arbitrary value w1(0) = α ∈ R, and we will

determine the value of α from the external boundary condition Ṽ (R) = g, once we

have constructed the candidate value function on the whole domain.

The construction of the value function proceeds in the same way as in Case I,

and we omit the details here. We state the candidate value function in both cases

in the following Definition 2.14.

Definition 2.14 (Candidate value function). Let the cost functions f and g be as

in Assumption 2.11. For k ∈ N and i = 0, . . . , k, define the constant

Fki := 2
k∑

j=i+1

[
(rj − sj−1)sj−1f̃(sj−1) +

∫ rj

sj−1

∫ s

sj−1

f̃(t) dt ds+

∫ sj

rj

sf̃(s) ds

]
.

Then we define the candidate value function V : D → R as follows.

Case I: If f̃ is increasing in (0, η), then set s0 = 0 and let K ∈ N be such that

R ∈ (sK−1, sK ]. For x ∈ D, define

V (x) = g − 2

∫ sK

R∨rK
sf̃(s) ds

− 2(rK −R ∧ rK)sK−1f̃(sK−1)− 2

∫ rK

R∧rK

∫ s

sK−1

f̃(t) dt ds

+ 2
K∑
i=1

1{(si−1,si]}(|x|)
[
(ri − |x| ∧ ri)si−1f̃(sı−1) +

∫ ri

|x|∧ri

∫ s

si−1

f̃(t) dt ds

+

∫ si

|x|∨ri
sf̃(s) ds+ FKi

]
.
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Case II: If f̃ is decreasing in (0, η), then set r0 = 0 and let L ∈ N be such that

R ∈ (rL, rL+1]. For x ∈ D, define

V (x) = g − 2

∫ sL

R∧sL
sf̃(s) ds

+ 2(R ∨ sL − sL)sLf̃(sL) + 2

∫ R∨sL

sL

∫ s

sL

f̃(t) dt ds

+ 2
L∑
i=0

1{(ri,ri+1]}(|x|)
[∫ si

|x|∧si
sf̃(s) ds− (|x| ∨ si − si)sif̃(si)

−
∫ |x|∨si
si

∫ s

si

f̃(t) dt ds+ FLi

]
.

Before turning to the rigorous proof of optimality in Section 2.3.5, we make

a digression to discuss the smooth fit property that the candidate value function

exhibits.

2.3.4 The principle of smooth fit

In the preceding construction, the smooth fit condition is required to fix the switch-

ing points si. It is notable, however, that we do not need to impose smooth fit to

uniquely identify the points ri, but the smooth fit condition is nevertheless satisfied

at these switching points.

The principle of smooth fit is commonly used in optimal stopping problems, as

described in Section 9.1 of [47]. For a continuous R-valued diffusion process, the

optimal stopping time is the first exit time of some interval. The interval is chosen

such that the value function dominates the cost function everywhere and matches

both the value and the first derivative of the cost function at the end points.

In [48], Pham shows how the smooth fit property arises in a one-dimensional

switching problem, similar to the problem that we are studying in this chapter.

Pham proves that smooth fit holds using the theory of viscosity solutions, under the

assumption that the underlying stochastic process has strictly positive diffusivity in

each regime.

In our problem, the controlled radius process behaves locally like a Brownian

motion in the regime of radial motion. Therefore, at the points si, where the optimal

behaviour switches to radial motion, the conditions are met for Pham’s result to

hold. This justifies the smooth fit condition at the switching points si. However,

in the regime of tangential motion, the controlled radius process is deterministic.

Therefore we cannot apply Pham’s reasoning to justify smooth fit at the points ri
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where the optimal behaviour switches to this regime. It is interesting to note that,

although Pham’s justification from [48] breaks down at the points ri, smooth fit still

holds at these switching points.

2.3.5 Proof of optimality

We now turn to the proof that the candidate function that we have constructed is

indeed the value function.

Proposition 2.15. Under Assumption 2.11, the value function v is continuously

differentiable and takes the form v = V , where V is defined in Definition 2.14.

Moreover, there exists an optimal control σ? ∈ U in the following cases. If f̃ is

increasing in (0, η), then the control σ? defined in (2.10) is optimal. If f̃ is decreasing

in (0, η) and the initial condition is x ∈ D\{0}, then the control σ? defined in (2.11)

is optimal.

In order to prove this result, we refer to the theory of viscosity solutions for

Hamilton-Jacobi-Bellman (HJB) equations that we develop in Chapter 4. The main

result of Chapter 4 is the following theorem, which we restate here for reference.

Theorem 4.20. Suppose that Assumption 1.16 holds, and suppose further that the

domain D is uniformly convex, the running cost f is continuous in D, and the

boundary cost g is uniformly continuous on ∂D.

Then the value function v : D → R defined in Section 1.4.1 extends continuously

to D and is the unique viscosity solution of the HJB equation

− 1

2
inf
σ∈U

Tr
(
D2vσσ>

)
− f = 0

in D, with boundary condition

v = g on ∂D.

In this section, we will prove that the candidate function V is a viscosity solution

of the HJB equation

− 1

2
inf
σ∈U

Tr
(
D2V (x)σσ>

)
= f(x), x ∈ D, (2.20)

with boundary condition V = g on ∂D. We then appeal to Theorem 4.20, as stated

above, to see that the value function v is a viscosity solution of the same boundary

value problem and, moreover, such a solution is unique. From this, we conclude that

the function V is equal to the value function v.
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We first show that V is a classical solution of (2.20) in the regions where we

expect radial motion to be optimal.

Lemma 2.16. For each i ≥ 1, define ui : (si−1, ri ∧R]→ R by

ui(r) = 2

∫ ri

r

∫ s

si−1

f̃(t) dt ds+ 2(ri − r)si−1f̃(si−1) + Cu
i ,

for an arbitrary constant Cu
i , and define Ui : D → R by

Ui(x) = ui(|x|).

Then Ui is a classical solution of the PDE (2.20) in the region

{x ∈ D : |x| ∈ (si−1, ri ∧R)}.

Proof. Fix i ≥ 1 and let x ∈ D be such that |x| ∈ (si−1, ri ∧ R). Observe that, by

definition of ri,

u′i(|x|) ≥ −2 |x| f̃(|x|). (2.21)

We have that Ui is twice continuously differentiable at x and

D2Ui(x) = |x|−3 [|x|u′′i (|x|)− u′i(|x|)]xx> + |x|−1 u′i(|x|)I.

Substituting in u′′i (|x|) = −2f̃(|x|) and rearranging gives

D2Ui(x) = − |x|−3
[
2 |x| f̃(|x|) + u′i(|x|)

]
xx> + |x|−1 u′i(|x|)I

= −2f̃(|x|)I + |x|−3
[
2 |x| f̃(|x|) + u′i(|x|)

] [
|x|2 I − xx>

]
.

Hence, for any σ ∈ U ,

Tr
(
D2Ui(x)σσ>

)
= −2f̃(|x|) Tr(σσ>)

+ |x|−3
[
2 |x| f̃(|x|) + u′i(|x|)

]
Tr
([
|x|2 I − xx>

]
σσ>

)
.

Noting that |x|2 I − xx> is positive semi-definite, and using (2.21), we have

Tr
(
D2Ui(x)σσ>

)
≥ −2f̃(|x|) Tr(σσ>) = −2f(x),

for any σ ∈ U .

Taking σ = σ1(x), where σ1 : D → R is the function defined in Definition 2.7,
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we see that

Tr
([
|x|2 I − xx>

]
σ1(x)σ1(x)

>
)

= 0,

and so

Tr
(
D2Ui(x)σ1(x)σ1(x)

>
)

= −2f(x).

Hence Ui is a classical solution of the PDE (2.20) in the the region {x ∈ D : |x| ∈
(si−1, ri ∧R)}.

We next show that V is a viscosity solution of (2.20) in the regions where we

expect tangential motion to be optimal.

Lemma 2.17. For each i ≥ 0, define wi : (ri, si ∧R]→ R by

wi(r) = 2

∫ si

r

sf̃(s) ds+ Cw
i ,

for an arbitrary constant Cw
i , and define Wi : D → R by

Wi(x) = wi(|x|).

Then Wi is a viscosity solution of the PDE (2.20) in the region

{x ∈ D : |x| ∈ (ri, si ∧R)}.

Note that wi is twice continuously differentiable if and only if f̃ is continuously

differentiable. We first suppose that this is the case and prove the following lemma.

Lemma 2.18. Fix i ≥ 0 and suppose that f̃ is continuously differentiable in the

interval (ri, si ∧ R). Then Wi defined in Lemma 2.17 is a classical solution of the

PDE (2.20) in the region {x ∈ D : |x| ∈ (ri, si ∧R)}.

Proof. Let x ∈ D be such that |x| ∈ (ri, si ∧R). Observe that, by definition of si,

w′′i+1(|x|) ≥ −2f̃(|x|). (2.22)

Since f̃ is assumed to be continuously differentiable, we have that wi and Wi are

both twice continuously differentiable, and

D2Wi(x) = |x|−3 [|x|w′′i (|x|)− w′i(|x|)]xx> + |x|−1w′i(|x|)I.

Substituting in w′i(|x|) = −2 |x| f̃(|x|), we have

D2Wi(x) = |x|−2
[
w′′i (|x|) + 2f̃(|x|)

]
xx> − 2f̃(|x|)I.
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Hence, for any σ ∈ U ,

Tr
(
D2Wi(x)σσ>

)
= |x|−2

[
w′′i (|x|) + 2f̃(|x|)

]
Tr(xx>σσ>)− 2f̃(|x|) Tr(σσ>)

≥ −2f̃(|x|) Tr(σσ>) = −2f(x),

using the inequality (2.22).

Taking σ = σ0(x), where σ0 : D → R is the function defined in Definition 2.3,

we see that

Tr
(
xx>σ0(x)σ0(x)

>
)

= 0,

and so

Tr
(
D2Wi(x)σ0(x)σ0(x)

>
)

= −2f(x).

Hence Wi is a classical solution of the PDE (2.20) in the region {x ∈ D : |x| ∈
(ri, si ∧R)}.

We can now prove Lemma 2.17, by using smooth approximations to the continu-

ous function f̃ and applying a standard stability result for viscosity solutions, which

can be found, for example, in Lemma 6.2 of [26, Chapter II].

Proof of Lemma 2.17. Fix i ≥ 1. Since f̃ is continuous on [ri, si ∧ R], we can

approximate f̃ uniformly by polynomials (f̃k)k∈N (see e.g. Theorem 7.26 of [54]).

For convenience, define the region Di := {x ∈ D : |x| ∈ (ri, si ∧ R)}. Let k ∈ N
and define W k

i : Di → R by

W k
i (x) := −2

∫ |x|
ri

f̃k(s)s ds+ Cw
i .

Define fk : Di → R by fk(x) = f̃k(|x|), and define F k : Di × Rd,d → R by

F k(x,X) = −1

2
inf
σ∈U

Tr(Xσσ>)− fk(x).

Then, since f̃k is continuously differentiable, we can apply Lemma 2.18 to see that

W k
i is a classical solution, and therefore a viscosity solution, of

F k(x,D2W k
i (x)) = 0 for x ∈ Di.

We now show that F k converges uniformly to F : Di × Rd,d → R, defined by

F (x,X) = −1

2
inf
σ∈U

Tr(Xσσ>)− f(x),
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and that W k
i converges uniformly to Wi.

Let ε > 0. Then, by uniform convergence of (f̃k)k∈N, there exists N ∈ N such

that ∣∣∣f̃(r)− f̃k(r)
∣∣∣ < ε, for all r ∈ [r0, R] and k ≥ N.

Let k ≥ N , x ∈ Di and X ∈ Rd,d. Then |x| ∈ [ri, si ∧R], and so∣∣F (x,X)− F k(x,X)
∣∣ =

∣∣f(x)− fk(x)
∣∣

=
∣∣∣f̃(|x|)− f̃k(|x|)

∣∣∣ < ε.

Therefore F k → F uniformly on Di × Rd,d.

Now choose M ∈ N such that∣∣∣f̃(r)− f̃k(r)
∣∣∣ < ε

2si(si − ri)
, for all r ∈ [ri, si] and k ≥M.

Let k ≥M and x ∈ Di. Then |x| ∈ [ri, si ∧R], and so

∣∣Wi(x)−W k
i (x)

∣∣ = 2

∣∣∣∣∣
∫ |x|
ri

(
f̃(s)− f̃k(s)

)
s ds

∣∣∣∣∣
≤ 2

∫ |x|
ri

∣∣∣f̃(s)− f̃k(s)
∣∣∣ |s| ds

≤ 2

∫ si

ri

∣∣∣f̃(s)− f̃k(s)
∣∣∣ |s| ds

≤ 2(si − ri)
ε

2si(si − ri)
si

= ε.

Hence W k
i → Wi uniformly on Di.

We can now apply the stability result given in Lemma 6.2 of [26, Chapter II], to

conclude that Wi is a viscosity solution of

F (x,D2Wi(x)) = 0 for x ∈ Di;

i.e. Wi is a viscosity solution of the PDE (2.20) in the region {x ∈ D : |x| ∈ (ri, si ∧
R)}.

We now combine the above lemmas to prove that V is the value function.

Proof of Proposition 2.15. We divide the domain D into disjoint regions and prove

first that V is a viscosity solution of (2.20) in the interior of each region.

69



2.3. Explicit solution in the general case

Step 1: Fix i ≥ 1 such that si−1 ≤ R, if such a point exists. In the region

{x ∈ D : |x| ∈ (si−1, ri ∧ R)}, we have V = Ui, for a particular choice of constant

Cu
i . So by Lemma 2.16, V is a viscosity solution of (2.20) in this region.

Now fix i ≥ 0 such that ri ≤ R, if such a point exists. In the region {x ∈
D : |x| ∈ (ri, si ∧ R)}, we have V = Wi for a particular choice of constant Cw

i , and

so V is a viscosity solution of (2.20) in this region, by Lemma 2.17.

Step 2: We next prove that V is a viscosity solution of (2.20) on each of the

internal boundaries between the regions.

Let i ≥ 0 be such that ri < R, if such a point exists. Consider xi ∈ D such that

|xi| = ri. Note that

lim
|x|→ri−

D2V (x)

= lim
|x|→ri−

D2Ui(x)

= − lim
|x|→ri−

[
2f̃(|x|)I + |x|−3

(
2 |x| f̃(|x|) + u′i(|x|)

) [
|x|2 I − xx>

]]
= −2f̃(ri)I,

(2.23)

since 2rif̃(ri) + ui
′
−(ri) = 0, by definition of ri and continuity of f̃ .

To show that V is a viscosity subsolution at xi, let xi ∈ arg min(φ−V ), for some

φ ∈ C∞(D). Since V ∈ C1(D), it must be the case that Dφ(xi) = DV (xi), and that

the Hessian of φ satisfies

D2φ(xi) ≥ lim
|x|→ri−

D2V (x) = −2f̃(ri)I,

as calculated in (2.23). Hence, for any σ ∈ U ,

Tr
(
D2φ(xi)σσ

>) ≥ −2f̃(ri) Tr(σσ>) = −2f(xi),

and so

− 1

2
inf
σ∈U

Tr
(
D2φ(xi)σσ

>) ≤ f(xi),

as required.

To show the supersolution property, let xi ∈ arg max(ψ − V ), for some ψ ∈
C∞(D). Then by a similar argument to the one above, we have

D2ψ(xi) ≤ −2f̃(ri)I,
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and so

Tr
(
D2ψ(xi)σσ

>) ≤ −2f(xi),

for any σ ∈ U , which implies that

− 1

2
inf
σ∈U

Tr
(
D2ψ(xi)σσ

>) ≥ f(xi).

Now let i ≥ 0 be such that si < R, if such a point exists, and consider xi ∈ D
such that |xi| = si. Here, note that

lim
|x|→si+

D2V (x)

= lim
|x|→si+

D2Ui+1(x)

= − lim
|x|→si+

[
2f̃(|x|)I + |x|−3

(
2 |x| f̃(|x|) + u′i+1(|x|)

) [
|x|2 I − xx>

]]
= −2f̃(si)I,

(2.24)

using the fact that 2sif̃(si) + ui+1
′
+(si) = 0, by definition of si and the smooth fit

property.

To show that V is a viscosity solution at points of radius si, we follow the same

reasoning as we did for points of radius ri. For xi ∈ arg min(φ−V ) and φ ∈ C∞(D),

we have that

D2φ(xi) ≥ lim
|x|→si+

D2V (x) = −2f̃(si)I,

using (2.24). So, for any σ ∈ U ,

Tr
(
D2φ(xi)σσ

>) ≥ −2f(xi),

which implies that the subsolution property holds.

Similarly, for xi ∈ arg max(ψ − V ) and ψ ∈ C∞(D), we have

D2ψ(xi) ≤ −2f̃(si)I,

and so, for any σ ∈ U ,

Tr
(
D2ψ(xi)σσ

>) ≤ −2f(xi),

which implies the supersolution property.
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Step 3: We have shown that V is a viscosity solution of (2.20) in D\{0}. We now

consider the behaviour at the origin. Recall from Assumption 2.11 that we have

assumed that f̃ is monotone on some interval (0, η).

Case I: Suppose that f̃ is strictly increasing on (0, η).

Then V = U1 in some neighbourhood of the origin. We see that r1 > η, and so

V = U1 in Bη(0). Let x ∈ Bη(0) and consider

D2V (x) = −2f̃(|x|)I + |x|−3
(

2 |x| f̃(|x|) + u′1(|x|)
) [
|x|2 I − xx>

]
.

Since |x| < r1, we have

2 |x| f̃(|x|) + u′1(|x|) > 0.

Substituting in the value of u′1 and considering a first order Taylor expansion around

0, we find that there exists C > 0 such that

2 |x| f̃(|x|) + u′1(|x|) = −2

∫ |x|
0

f̃(s) ds = 2 |x|
(
f̃(|x|)− f̃(0)

)
+ o(|x|)

≤ 2 |x|
(
f̃(|x|)− f̃(0)

)
+ C |x|2 .

Hence, for j, k ∈ {1, . . . , d},

0 ≤ |x|−3
(

2 |x| f̃(|x|) + u′i(|x|)
) ∣∣∣[|x|2 I − xx>]

jk

∣∣∣
≤ |x|−1

(
2 |x| f̃(|x|) + u′i(|x|)

)
≤ 2

(
f̃(|x|)− f̃(0)

)
C |x| .

Taking the limit as |x| → 0+, by continuity of f̃ , we see that

lim
x→0

D2V (x) = −2f̃(0)I.

We now show that V is a viscosity solution of (2.20) at 0. Let φ ∈ C∞(D)

be such that 0 ∈ arg max(V − φ). Since the gradient DV is continuous, we have

Dφ(0) = DV (0) = 0 and

D2φ(0) ≤ lim
x→0

D2V (x) = −2f̃(0)I,

and so V is a viscosity subsolution of (2.20) at 0. On the other hand, for any

72



2.3. Explicit solution in the general case

ψ ∈ C∞(D) such that 0 ∈ arg min(V − ψ), we have Dψ(0) = DV (0) = 0 and

D2ψ(0) ≥ −2f̃(0),

and so V is a viscosity supersolution of (2.20) at 0.

Case II: On the other hand, if f̃ is decreasing in (0, η), we have that V = W1

in Bη(0). Recall from Assumption 2.11 that we have assumed that f̃ is continuously

differentiable on some interval (0, δ), and consider x ∈ D such that |x| < δ ∧ η.

We have that

D2V (x) = |x|−2
[
w′′1(|x|) + 2f̃(|x|)

]
xx> − 2f̃(|x|)I

= 2 |x|−2
[
− |x| f̃ ′(|x|)− f̃(|x|) + f̃(|x|)

]
xx> − 2f̃(|x|)I

= −2 |x|−1 f̃ ′(|x|)xx> − 2f̃(|x|)I.

Since f̃ ′(|x|) ≤ 0, we get the following bound. For j, k ∈ {1, . . . , d},

0 ≤ −2 |x|−1 f̃ ′(|x|) |xjxk| ≤ −2 |x| f̃ ′(|x|)→ 0, as |x| → 0+,

by the fifth statement of Assumption 2.11.

Therefore limx→0D
2V (x) = −2f̃(0)I, and so V is a viscosity solution of (2.20)

at the origin, by the same argument as for Case I.

Step 4: By construction of the function V , the boundary condition V = g on ∂D

is satisfied. We conclude, by Theorem 4.20, that the function V is equal to the

value function v. Also, by the construction of V , we have that the value function v

is continuously differentiable in D.

Step 5: Finally, we turn to the proof that the control σ? is optimal. It is sufficient

to show that

t 7→ V (Xσ?

t ) +

∫ t

0

f(Xσ?

s ) ds

is a martingale. We will work with the squared radius of the process Xσ? , writing

Zσ?

t =
∣∣Xσ?

t

∣∣, for t ≥ 0. We also let V : [0, R2)→ R be such that V (x) = V (|x|) for

all x ∈ D.

Suppose that f̃ is increasing on the interval (0, η). Then σ? is given by (2.10).

Letting W be the first component of the Brownian motion B, Lemma 2.2 tells us
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that Zσ? satisfies the SDE

dZσ?

t = dt+ 2

(∑
i

1{Zσ?t ∈(s2i ,r
2
i+1∧R2)} + 1{Zσ?t ∈[0,r21∧R2)}

)√
Zσ?
t dWt,

where the index i runs from 1 to the first i such that ri+1 ≥ R.

In each interval [r2
i , s

2
i ], there is a constant C such that

V (z) = 2

∫ si

√
z

sf̃(s) ds+ C.

Therefore, since dZσ?

t = dt when Zσ?

t ∈ [r2
i , s

2
i ], we can make a change of variables

to find that

1{Zσ?t ∈[r2i ,s
2
i ]} dV (Zσ?

t ) = −1{Zσ?t ∈[r2i ,s
2
i ]}f̃

(√
Zσ?
t

)
dt. (2.25)

Now, in each interval (s2
i , r

2
i+1), there is a constant C such that

V (z) = 2

∫ ri+1

√
z

∫ s

si

f̃(t) dt ds+ 2(ri+1 −
√
z)sif̃(si) + C.

We see that V is twice continuously differentiable in such an interval, and so we can

apply Itô’s formula to V (Zσ?). We calculate the derivatives

V
′
(z) = −z−

1
2

∫ √z
si

f̃(s) ds− z−
1
2 sif̃(si),

and

V
′′
(z) =

1

2
z−

3
2

∫ √z
si

f̃(s) ds− 1

2
Z−1f̃(

√
z) +

1

2
z−

3
2 sif̃(si).

Then, by Itô’s formula, we find that

1{Zσ?t ∈(s2i ,r
2
i+1)} dV (Zσ?

t ) = −1{Zσ?t ∈(s2i ,r
2
i+1)}f̃

(√
Zσ?
t

)
dt

+ 21{Zσ?t ∈(s2i ,r
2
i+1)}V

′
(Zσ?

t )
√
Zσ?
t dWt.

We have a similar expression for the interval [0, r2
1), and so combining this with

(2.25), we have

V (Xσ?

t )− V (Xσ?

0 ) = −
∫ t

0

f(Xσ?

s ) ds

+ 2

∫ t

0

(∑
i

1{Zσ?s ∈(s2i ,r
2
i+1)} + 1{Zσ?s ∈[0,r21)}

)√
Zσ?
s dWs,
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for any t ≥ 0. This shows that the required martingale property holds, and so σ? is

an optimal control.

Now suppose that f̃ is decreasing on the interval (0, η), and let Xσ?

0 = x, for

some x ∈ D \ {0}. In this case σ? is given by (2.11), and Zσ? satisfies

dZσ?

t = dt+ 2
∑
i

1{Zσ?t ∈(s2i ,r
2
i+1∧R2)}

√
Zσ?
t dWt,

where now the index i runs from 0 to the first i such that ri+1 ≥ R. We see that

Zσ? never hits the origin.

We can make the same calculations as above to find that, for any t ≥ 0,

V (Xσ?

t )− V (Xσ?

0 ) = −
∫ t

0

f(Xσ?

s ) ds+ 2

∫ t

0

∑
i

1{Zσ?s ∈(s2i ,r
2
i+1)}

√
Zσ?
s dWs,

and so the required martingale property holds once again. We conclude that σ? is

optimal.

We required the smoothness conditions on the running cost f in Assumption 2.11

in order to show that the candidate value function is a viscosity solution at the

origin. In Section 2.4, we will relax these assumptions and extend the above result

to include cost functions that have an infinite discontinuity at the origin. In this

case, we cannot define a viscosity solution of the HJB equation (2.20) at the origin,

and so Theorem 4.20 will no longer be applicable.

2.4 Infinite cost at the origin

We now extend Proposition 2.15 by considering the case where the cost function

is continuous on the whole domain, except at the origin where it is allowed to

become infinite. We will show that the value function takes the same form as we

saw in Proposition 2.15. We will also find growth conditions on the cost function

under which the value function becomes infinite. We note that, in allowing the cost

function to become infinite at the origin, we must take care to check that we still

have equality between the strong value function vS and the weak value function vW ,

as we showed in Proposition 1.7 for the case of continuous cost functions. We will

find a particular growth regime where we require results on Brownian filtrations

from Chapter 3 in order to prove that vS(0) = vW (0) in dimension d = 2.

We relax Assumption 2.11 to remove some of the regularity conditions on the

cost function f , as follows.
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2.4. Infinite cost at the origin

Assumption 2.19. We assume that

1. The domain is D = BR(0) ⊂ Rd, for some R > 0 and d ≥ 2;

2. The cost function f is radially symmetric; i.e. f(x) = f̃(|x|), for some function

f̃ : [0, R)→ R;

3. The boundary cost g is constant;

4. The cost function f is continuous on D \ {0};

5. There exists η > 0 such that the cost function f̃ is monotone on the interval

(0, η);

6. The one-sided derivative f̃ ′+(r) exists for all r > 0 and changes sign only finitely

many times.

Note that we retain the fifth statement in this assumption to ensure that the

cost function does not oscillate as it approaches the origin, and we retain the sixth

statement so that there are finitely many switching points and these are well-defined.

Having relaxed the conditions on the cost function f , we can no longer use the

theory of viscosity solutions. To prove the following results, we once again treat

the cases of increasing and decreasing costs separately, and we distinguish between

regimes of slow and fast growth at the origin. The different growth regimes will be

determined by the convergence of the integrals∫ r

0

f̃(s) ds and

∫ r

0

sf̃(s) ds.

In each of the proofs in this section, we make the simplifying assumption that the

boundary cost is g = 0. However, the results still hold for any constant boundary

cost g.

2.4.1 Cost functions increasing at the origin

We first consider cost functions that are increasing in some neighbourhood around

the origin. In this case, we will find that radial motion, as defined in Definition 2.7,

is optimal close to the origin.

Proposition 2.20. Suppose that Assumption 2.19 holds and there exists η > 0 such

that f̃ is negative and increasing on the interval (0, η). Then the strong and weak

value functions defined in Section 1.4.1 are equal, and we can write v = vS = vW .
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2.4. Infinite cost at the origin

If, for any r > 0, ∫ r

0

f̃(s) ds > −∞,

then the value function v is finite and equal to the candidate value V defined in

Definition 2.14.

If, for any r > 0, ∫ r

0

f̃(s) ds = −∞,

then v ≡ −∞.

Remark 2.21. Note that, since f̃ is increasing on (0, η), the function V is defined

in Case I of Definition 2.14, with s0 = 0 and r1 = inf
{
r > 0:

∫ r
0
f̃(s) ds > rf̃(r)

}
.

When
∫ r

0
f̃(s) ds > −∞ for any r > 0, the switching point r1 is well-defined.

Proof of Proposition 2.20. First suppose that, for any r > 0,∫ r

0

f̃(s) ds > −∞.

For N ∈ N, define an approximating sequence of functions f̃N : [0, R)→ R by

f̃N(r) =

f̃( 1
N

), r ≤ 1
N
,

f̃(r), r > 1
N
,

and define fN : D → R by fN(x) = f̃N(|x|) for x ∈ D. Then fN is continuous and

bounded. Moreover, fixing N > 1
η
, we have the bound fN ≥ f .

Now define vSN : D → R by

vSN(x) := inf
σ∈U

Ex
[∫ τ

0

fN(Xσ
s ) ds

]
, x ∈ D,

using the same notation as in the definition of the strong value function vS in

Section 1.4.1. Note that vSN ≥ vS.

Let VN denote the candidate value function defined in Case I of Definition 2.14

with the function f̃ replaced by f̃N . Since Assumption 2.11 is satisfied for the

value function vSN , we can apply Proposition 2.15 to see that vSN = VN . We can

also see that, for any x ∈ D, limN→∞ VN(x) = V (x) and V (x) is finite, since∫ r
0
f̃(s) ds > −∞ for any r > 0. We will show that limN→∞ v

S
N(x) = vS(x) and

conclude that vS(x) = V (x).
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Fix σ ∈ U and x ∈ D. We have

Ex
[∫ τ

0

f̃N(|Xσ
s |) ds

]
= Ex

[∫ τ

0

f̃(|Xσ
s |)1{|Xσ

s |∈( 1
N
,R)} ds

]
+ f̃

(
1

N

)
Ex
[∫ τ

0

1{|Xσ
s |≤ 1

N }

]
.

(2.26)

Define K := sup{f(x) : x ∈ D} and note that K <∞ by continuity of f in D \ {0}.
Then the sequence (∫ τ

0

f̃(|Xσ
s |)1{|Xσ

s |∈( 1
N
,R)} ds

)
N∈N

is decreasing for N > 1
η

and bounded above by τK. Since τ has finite expectation

by Proposition 1.5, we can apply monotone convergence (see e.g. Theorem 1 of [55,

Chapter II, §6]) to show that

lim
N→∞

Ex
[∫ τ

0

f̃(|Xσ
s |)1{|Xσ

s |∈( 1
N
,R)} ds

]
= Ex

[
lim
N→∞

∫ τ

0

f̃(|Xσ
s |)1{|Xσ

s |∈( 1
N
,R)} ds

]
= Ex

[∫ τ

0

f̃(|Xσ
s |) ds

]
.

We will show that the second term of (2.26) vanishes as N →∞ by referring to

Proposition 2.8 on the control problem for a step cost function. Note that f̃( 1
N

) < 0.

For x 6= 0, we can choose N > 1
|x| , so that, by Proposition 2.8,

0 > f̃

(
1

N

)
Ex
[∫ τ

0

1{|Xσ
s |≤ 1

N }

]
= −f̃

(
1

N

)
Ex
[∫ τ

0

−1{|Xσ
s |≤ 1

N }

]
≥ − 2

N
f̃

(
1

N

)
(R− |x|)

N→∞−−−→ 0,

using the condition that
∫ r

0
f̃(s) ds > −∞ to find the limit.

For x = 0, Proposition 2.8 tells us that

0 > f̃

(
1

N

)
E0

[∫ τ

0

1{|Xσ |≤ 1
N } ds

]
= −f̃

(
1

N

)
E0

[
−
∫ τ

0

1{|Xσ |≤ 1
N } ds

]
≥ f̃

(
1

N

)(
2R

N
− 1

N2

)
≥ 2R

1

N
f̃

(
1

N

)
N→∞−−−→ 0.

Hence

lim
N→∞

Ex
[∫ τ

0

f̃N(|Xσ
s |) ds

]
= Ex

[∫ τ

0

f̃(|Xσ
s |) ds

]
,
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for any σ ∈ U , x ∈ D.

Now fix x ∈ D and ε > 0 and choose σε to be an ε-optimal strategy for the cost

function f ; i.e.

Ex
[∫ τ

0

f(Xσε

s ) ds

]
≤ vS(x) + ε.

Then

vS(x) + ε ≥ Ex
[∫ τ

0

f(Xσε

s ) ds

]
= lim

N→∞
Ex
[∫ τ

0

fN(Xσε

s ) ds

]
≥ lim

N→∞
vSN(x) ≥ vS(x).

Taking the limit as ε ↓ 0, we see that

vS(x) = lim
N→∞

vSN(x),

and by uniqueness of the limit, we have that vS(x) = V (x).

As in Proposition 1.7, we can apply Theorem 4.5 of [20] to see that vS = vW .

Since f is continuous in D \ {0}, upper semicontinuous at 0, and bounded above by

a constant, we can deduce that the conditions of Theorem 4.5 of [20] are met in the

same way as in the proof of Proposition 1.7. Hence vW = vS = V .

Now suppose that, for any r > 0,∫ r

0

f̃(s) ds = −∞.

We will show that radial motion is an optimal strategy and that this strategy gives

a negative infinite cost. Let the control σ1 be as defined in Definition 2.7, and define

Xσ1
by

Xσ1

t = x+

∫ t

0

σ1
s dBs, t ≥ 0.

Let W be the first component of the Brownian motion B.

First suppose that x 6= 0. Then, for any t ≥ 0,

Xσ1

t = x+
x

|x|
Wt,
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and so

Ex
[∫ τ

0

f̃(Xσ1

s ) ds

]
= E|x|

[∫ τ

0

f̃(|Ws|) ds

]
= E|x|

[∫ τ

0

f̃(Ws)1{Ws≥0} ds

]
+ E|x|

[∫ τ

0

f̃(−Ws)1{Ws<0} ds

]
.

We can now use the Green’s function G for the one-dimensional Brownian motion

W on the interval (−R,R), as calculated in Example 2.6 using the definitions in

Appendix B. By Proposition B.5, we see that

Ex
[∫ τ

0

f̃(Xσ1

s ) ds

]
= 2

∫ R

0

G(|x| , y)f̃(y) dy + 2

∫ 0

−R
G(|x| , y)f̃(−y) dy

=
|x|+R

R

∫ R

|x|
(R− y)f̃(y) dy +

R− |x|
R

∫ |x|
0

(y +R)f̃(y) dy

+
R− |x|
R

∫ 0

−R
(y +R)f̃(−y) dy.

Making a change of variables y 7→ −y in the last integral,

R− |x|
R

∫ 0

−R
(y +R)f̃(−y) dy =

R− |x|
R

∫ R

0

(R− y)f̃(y) dy,

and so

Ex
[∫ τ

0

f̃(Xσ1

s ) ds

]
= 2

∫ R

|x|
(R− y)f̃(y) dy + 2(R− |x|)

∫ |x|
0

f̃(y) dy.

Since f is bounded above and ∫ |x|
0

f̃(y) dy = −∞,

we have

Ex
[∫ τ

0

f̃(Xσ1

s ) ds

]
= −∞.

Hence

vW (x) ≤ vS(x) ≤ Ex
[∫ τ

0

f̃(Xσ1

s ) ds

]
= −∞.

Now let x = 0. Then for t ≥ 0,

Xσ1

t = e1Wt.
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By symmetry of the Green’s function G for W about zero, we have

E0

[∫ τ

0

f̃
(∣∣∣Xσ1

s

∣∣∣) ds

]
= 2E0

[∫ τ

0

f̃(Ws)1{Ws≥0} ds

]
= 4

∫ R

0

G(0, y)f̃(y) dy

= 2

∫ R

0

(R− y)f̃(y) dy

= −∞,

(2.27)

by the growth condition on f . Hence

vW (0) ≤ vS(0) ≤ E0

[∫ τ

0

f̃
(∣∣∣Xσ1

s

∣∣∣) ds

]
= −∞.

We conclude that

vW = vS ≡ −∞.

We have shown that, for cost functions increasing at the origin, there is a di-

chotomy depending on the convergence of
∫ r

0
f̃(s) ds. When

∫ r
0
f̃(s) ds > −∞ for

any r > 0, the value function is finite and equal to V , and when
∫ r

0
f̃(s) ds = −∞

for any r > 0, the value is identically equal to negative infinity.

2.4.2 Cost functions decreasing at the origin

We now consider cost functions that are decreasing in some neighbourhood around

the origin. Excluding the origin from this neighbourhood, an optimal strategy is

tangential motion, as defined in Definition 2.3.

We will first show that, away from the origin, the form of the value function is

unchanged from the value function in Proposition 2.15.

Proposition 2.22. Suppose that Assumption 2.19 holds and there exists η > 0 such

that f̃ is positive and decreasing on the interval (0, η).

Then, for x ∈ D \ {0}, v(x) = vS(x) = vW (x) = V (x) ∈ (−∞,∞), where V is

the candidate value function defined in Proposition 2.15.

Remark 2.23. In this case, since f̃ is decreasing on (0, η), V is defined in Case II

of Definition 2.14.

Proof of Proposition 2.22. For N ∈ N, define f̃N , fN and vSN as in the proof of

Proposition 2.20. Now, for N > 1
η
, we have f̃N ≤ f̃ , fN ≤ f , and vSN ≤ vN .
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Recall that, by Proposition 2.15, vSN = VN , where VN is the candidate value

function defined in Case II of Definition 2.14 with the cost function f̃ replaced by

f̃N .

Fix x 6= 0 and N > 1
|x| ∨

1
η
. Then we can see that VN(x) = V (x), and V (x) is

finite. We will show that vSN(x) = vS(x) and conclude that vS(x) = V (x).

Let σ? be the control defined in (2.11). Since f̃N is decreasing in the interval

(0, η), Proposition 2.15 shows that σ? is optimal, and so

vSN(x) = Ex
[∫ τ

0

f̃N(
∣∣Xσ?

s

∣∣) ds

]
= f̃

(
1

N

)
Ex
[∫ τ

0

1{|Xσ?
s |≤ 1

N } ds

]
+ Ex

[∫ τ

0

f̃(
∣∣Xσ?

s

∣∣)1{|Xσ?
s |∈( 1

N
,R)} ds

]
.

(2.28)

When
∣∣Xσ?

t

∣∣ ∈ (0, η), the radius process t 7→
∣∣Xσ?

t

∣∣ is deterministically increasing,

by Lemma 2.2. Therefore, since |x| > 1
N

,

1{|Xσ?
t |≤ 1

N } = 0, for all t ≥ 0.

Hence, by (2.28) and the definition of vS, we have

vS(x) ≥ vSN(x) = Ex
[∫ τ

0

f̃(
∣∣Xσ?

s

∣∣) ds

]
≥ vS(x),

and so

vS(x) = vSN(x) = VN(x) = V (x).

Finally, for N ∈ N, define vWN : D → R by

vWN (x) := inf
P∈Px

EP
[∫ τ

0

fN(Xs) ds

]
, x ∈ D,

using the same notation as in the definition of the weak value function vW in Sec-

tion 1.4.1. By Proposition 1.7, vSN = vWN . Once again, fix x 6= 0 and N > 1
|x| ∨

1
η
, so

that vWN ≤ vW . Then we have

vSN(x) = vWN (x) ≤ vW (x) ≤ vS(x) = V (x) = vSN(x),

and we conclude that

vW (x) = vS(x) = V (x),

as required.

82



2.4. Infinite cost at the origin

At the origin, we have not shown that there exists an optimal control. The

function σ0 introduced in Definition 2.3 is not defined at the origin, and so we

require an approximation to tangential motion. We consider different growth rates

separately, as we did for increasing costs.

Proposition 2.24. Suppose that Assumption 2.19 holds and there exists η > 0 such

that f̃ is positive and decreasing on the interval (0, η).

Suppose further that, for any r > 0,∫ r

0

f̃(s) ds <∞.

Then v(0) = vS(0) = vW (0) = V (0) ∈ (−∞,∞), where V is the candidate value

defined in Definition 2.14.

Proof. For N ∈ N, define f̃N , fN and vSN as in the proof of Proposition 2.20. Letting

VN be the candidate value function in Case II of Definition 2.14 with f̃ replaced by

f̃N , we have vSN(0) = VN(0), by Proposition 2.15. We also see that limN→∞ VN(0) =

V (0), and the value V (0) is finite due to the growth condition on f̃ . We will show

that vS(0) = limN→∞ v
S
N(0) and conclude that vS(0) = V (0).

Fix δ ∈ (0, η) and N > 1
δ
. Denote by e1 the unit vector in the first coordinate

direction. Let σN ∈ U be an optimal control for the cost fN ; that is

vSN(0) = E0

[∫ τ

0

f̃N

(∣∣∣XσN

s

∣∣∣) ds

]
.

Since f̃N is constant on (0, 1
N

) and decreasing on ( 1
N
, η), by Proposition 2.15 we can

choose σN such that

σNt =
[
e1; 0; . . . ; 0

]
, for |Xt| <

1

N
,

and

σNt = σ0(Xt), for |Xt| ∈
[

1

N
, η

)
.

Also define a control σδ that coincides with σN except that we set

σδt =
[
e1; 0; . . . ; 0

]
, for |Xt| ∈

[
1

N
, δ

)
.

Under either control σN or σδ, the process t 7→ |Xt| is deterministically increasing

on the interval (δ, η), by Lemma 2.4. Therefore the error between the value vSN(0)
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2.4. Infinite cost at the origin

and the expected cost of choosing the control σδ with the cost f is

0 ≤ EN(δ) :=E0

[∫ τ

0

f̃
(∣∣∣Xσδ

s

∣∣∣) ds

]
− vSN(0)

=E0

[∫ τδ

0

f̃
(∣∣∣Xσδ

s

∣∣∣) ds

]
− E0

[∫ τδ

0

f̃N

(∣∣∣XσN

s

∣∣∣) ds

]
.

In the ball Bδ(0), the process Xσδ is equal to a one-dimensional Brownian motion

in the direction e1 and so, making a calculation with the Green’s function similar

to (2.27) in the proof of Proposition 2.20, we find that

E0

[∫ τδ

0

f̃
(∣∣∣Xσδ

s

∣∣∣) ds

]
= 2

∫ δ

0

(δ − y) f̃(y) dy.

We now compute the expected cost under the control σN . When
∣∣∣XσN

t

∣∣∣ ∈ ( 1
N
, δ),

the process XσN follows tangential motion, and so we can calculate

E
1
N

[∫ τδ

0

f̃N

(∣∣∣XσN,ε

s

∣∣∣) ds

]
=

∫ δ2−N−2

0

f̃(
√
N−2 + s) ds = 2

∫ δ

1
N

sf̃(s) ds.

In the ball B 1
N

(0), the process XσN is a one-dimensional Brownian motion and so,

making another calculation with the Green’s function, we can write

E0

[∫ τδ

0

f̃N

(∣∣∣XσN

s

∣∣∣) ds

]
= E0

[∫ τ 1
N

0

f̃N

(∣∣∣XσN

s

∣∣∣) ds

]
+ E

1
N

[∫ τδ

0

f̃N

(∣∣∣XσN

s

∣∣∣) ds

]
=

1

N2
f̃

(
1

N

)
+ 2

∫ δ

1
N

yf̃(y) dy.

Therefore the error is

EN(δ) = 2

∫ δ

0

(δ − y)f̃(y) dy − 2

∫ δ

1
N

yf̃(y) dy − 1

N2
f̃

(
1

N

)
.

Since
∫ r

0
f̃(s) ds <∞ for any r > 0, we can take the limit as N →∞ to get

E(δ) := lim
N→∞

EN(δ) = 2

∫ δ

0

(δ − 2y) f̃(y) dy,

and then taking the limit as δ → 0 gives

0 ≤ E(δ) = 2

∫ δ

0

(δ − 2y) f̃(y) dy
δ→0−−→ 0. (2.29)
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2.4. Infinite cost at the origin

Returning to the definition of EN(δ), for fixed δ ∈ (0, η) and N > 1
δ
, we recall that

vSN(0) + EN(δ) = E0

[∫ τ

0

f̃
(∣∣∣Xσδ

s

∣∣∣) ds

]
. (2.30)

Since f̃N ≤ f̃ , we have

vS(0) + EN(δ) ≥ vSN(0) + EN(δ).

By the definition of vS, note that

E0

[∫ τ

0

f̃
(∣∣∣Xσδ

s

∣∣∣) ds

]
≥ vS(0).

Combining these inequalities with (2.30), we see that

vS(0) + EN(δ) ≥ vSN(0) + EN(δ) ≥ vS(0).

Since the sequence
(
vSN(0)

)
N∈N is monotone, we can take the limit as N → ∞ and

find that

vS(0) + E(δ) ≥ lim
N→∞

vSN(0) + E(δ) ≥ vS(0).

Having calculated that limδ→0E(δ) = 0 in (2.29), we have that

vS(0) = lim
N→∞

vSN(0),

and vS(0) = V (0).

Defining vWN as in the proof of Proposition 2.22, we have vSN(0) = vWN (0) for any

N ∈ N, and so we can conclude that vS(0) = vW (0) = V (0).

Remark 2.25. Note that, if the growth rate of f̃ is such that, for any r > 0,∫ r

0

f̃(s) ds =∞,

then the error E(δ) in the proof of Proposition 2.24 is infinite for all δ. Therefore

the above argument does not generalise to costs with faster growth at the origin.

We now consider decreasing costs with faster growth at the origin.

Proposition 2.26. Suppose that Assumption 2.19 holds and that there exists η > 0

such that f̃ is positive and decreasing on the interval (0, η). If, for any r > 0,∫ r

0

sf̃(s) ds =∞,
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2.4. Infinite cost at the origin

then

v(0) = +∞.

Proof. Once again define f̃N , fN and vSN as in the proof of Proposition 2.20. Let

N > 1
η

and define the control σN as in the proof of Proposition 2.24, so that σN is

optimal for the cost fN .

Using the calculations of the expected cost under the control σN from the proof

of Proposition 2.24, we find that

vSN(0) = E0

[∫ τ

0

f̃N

(∣∣∣XσN

s

∣∣∣) ds

]
= E0

[∫ τη

0

f̃N

(∣∣∣XσN

s

∣∣∣) ds

]
+ E0

[∫ τ

0

f̃
(∣∣∣XσN

s

∣∣∣)1{|XσN |∈(η,R)} ds

]
≥ 1

N2
f̃

(
1

N

)
+ 2

∫ η

1
N

yf̃(y) dy + (R2 − η2) min
{
f̃(r) : r ∈ (η,R)

}
.

By the growth condition on f̃ , we have

lim
N→∞

∫ η

1
N

yf̃(y) dy = +∞.

Also, since f̃ is continuous on (0, R),

min
{
f̃(r) : r ∈ (η,R)

}
> −∞,

and so

lim
N→∞

vSN(0) = +∞.

For any N ∈ N, defining vWN as in the proof of Proposition 2.22, we have

vS(0) ≥ vW (0) ≥ vWN (0) = vSN(0).

Hence

vS(0) = vW (0) = +∞.

We have now fully characterised the value function for any radially symmetric

cost, except for the value at the origin when the cost function is decreasing at the

origin and grows at such a rate that, for any r > 0,∫ r

0

f̃(s) ds =∞ and

∫ r

0

sf̃(s) ds <∞.

We now state the result for this remaining growth regime.
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2.4. Infinite cost at the origin

Proposition 2.27. Suppose that Assumption 2.19 holds and that there exists η > 0

such that f̃ is positive and decreasing on the interval (0, η). If, for any r > 0,∫ r

0

f̃(s) ds =∞ and

∫ r

0

sf̃(s) ds <∞,

then

v(0) = vS(0) = vW (0) = V (0) ∈ (−∞,∞),

where V is the candidate value function defined in Definition 2.14.

We first prove the result for dimensions d ≥ 3.

Lemma 2.28. Under the conditions of Proposition 2.27 with d ≥ 3, we have

v(0) = vS(0) = vW (0) = V (0) ∈ (−∞,∞).

Proof. In this case, we can follow the same argument as in the proof of Proposi-

tion 2.24 except that we replace the constant control
[
e1; 0; . . . ; 0

]
with 1

d
I,

where I is the d-dimensional identity matrix. Instead of following a one-dimensional

Brownian motion at the origin, the controlled processes σN and σδ follow a scaled

d-dimensional Brownian motion. We now verify that the approximation arguments

in Proposition 2.24 hold with this change.

We will use the Green’s function for the d-dimensional Brownian motion B, as

defined in Section 3.3 of the book [45] of Mörters and Peres. By Theorem 3.32 and

3.33 of [45] and the radial symmetry of f , there are constants C,C ′ > 0 such that,

for any δ ∈ (0, η),

E0

[∫ τδ

0

f(Bs) ds

]
= C

∫
Bδ

|y|2−d f(y) dy

= C ′
∫ δ

0

rd−2f̃(r)rd−1 dr

= C ′
∫ δ

0

rf̃(r) dr.

Therefore, since
∫ r

0
sf̃(s) ds <∞ for any r > 0, we have

lim
δ→0

E0

[∫ τδ

0

f(Bs) ds

]
= 0.

Hence following the same arguments as in the proof Proposition 2.24 leads to the

desired result.
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2.4. Infinite cost at the origin

Now suppose that d = 2. Note that, from the form of the Green’s function for

2-dimensional Brownian motion given in Theorem 3.34 of [45], we can see that the

argument used for d ≥ 3 is no longer valid. In the following lemma, we treat the

weak control problem in dimension d = 2, delaying the proof of the result for the

strong control problem until Section 3.5.

Lemma 2.29. Under the conditions of Proposition 2.27 with d = 2, the weak value

function is given by

vW (0) = V (0) ∈ (−∞,∞).

Proof. Retaining the notation of the proof of Proposition 2.26, we have that, for

any y ∈ D with |y| = η,

vW (0) ≥ lim
N→∞

vSN(0)

= V (0) = 2

∫ η

0

ξf̃(y) dξ + V (y),
(2.31)

by Proposition 2.15 and the definition of V in Definition 2.14.

In Theorem 4.3 of [41], Larsson and Ruf prove that, for d = 2, there exists a

weak solution Xσ0
of the SDE

dXt = σ0(Xt) dBt; X0 = 0. (2.32)

The process Xσ0
follows tangential motion starting from the origin, as defined in

Definition 2.3. By Lemma 2.4, for any t ≥ 0,∣∣∣Xσ0

t

∣∣∣ =
√
t,

and so

E0

[∫ τη

0

f(Xσ0

s ) ds

]
=

∫ η2

0

f̃(
√
s) ds = 2

∫ η

0

ξf̃(ξ) dξ.

Note that Assumption 1.16 holds, and so we can apply the dynamic programming

principle from Proposition 1.17 to see that, for any y ∈ D with |y| = η,

vW (0) ≤ vS(0) ≤ E0

[∫ τη

0

f(Xσ0

s ) ds+ vS(Xσ0

τη )

]
= 2

∫ η

0

ξf̃(ξ) dξ + V (y),

using the result that vS = V away from the origin from Proposition 2.22.
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2.4. Infinite cost at the origin

Combining the above inequality with (2.31), we have

vW (0) = V (0),

as required.

We summarise the preceding results in the following extension of Proposition 2.15.

Theorem 2.30. Suppose that Assumption 2.19 is satisfied, and let V : D → R be

the candidate value function defined in Definition 2.14. Then the value function is

v = vS = vW = V.

Moreover, we can determine when the value function is finite. If there exists η > 0

such that f̃ is increasing on the interval (0, η), thenv > −∞, if
∫ r

0
f̃(s) ds > −∞ for any r > 0,

v ≡ −∞, if
∫ r

0
f̃(s) ds = −∞ for any r > 0.

If there exists η̃ > 0 such that f̃ is decreasing on the interval (0, η̃), thenv <∞, if
∫ r

0
sf̃(s) ds <∞ for any r > 0,

v(0) =∞ and v(x) <∞, x ∈ D \ {0}, if
∫ r

0
sf̃(s) ds =∞ for any r > 0.

r

f̃(r)

v = V

v ≡ −∞

v(0) =∞

1
r2

1
r

−1
r

Figure 2.8: Figure showing the distinct growth regimes for the cost function in
Theorem 2.30, highlighting the case where, for any r > 0,

∫ r
0
f̃(s) ds = ∞ and∫ r

0
sf̃(s) ds <∞, as in Proposition 2.27.

We now discuss what remains to prove Proposition 2.27 in the case d = 2.
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2.4. Infinite cost at the origin

Remark 2.31. Recall that, in Proposition 1.7, we appealed to Theorem 4.5 of

El Karoui and Tan’s paper [20] to show equality between weak and strong value

functions, under the assumption that the cost function f was upper semicontinuous

and bounded above by a constant.

Under the assumptions of Proposition 2.27, we cannot apply Theorem 4.5 of [20],

since one of the assumptions of that theorem is no longer satisfied. Namely, in our

setup, Theorem 4.5 of [20] is only applicable if the random variable

Fτ :=

∫ τ

0

f(Xs) ds

is bounded above by some random variable ξ that is uniformly integrable under

the family of probability measures P0 defined in Section 1.4.1. We show that this

condition is not satisfied as follows. Let e1 be the unit vector in the first coordinate

direction and define X1 by

X1
t = e1Bt, t ≥ 0.

Then let PX1
be the law of the process X1 and choose P ∈ P0 to be the product

measure

P := PX1 × δe1 .

Following the same Green’s function calculation as in (2.27) in Proposition 2.20, we

use Proposition B.5 to compute that

EP
[∫ τ

0

f(Xs) ds

]
=

∫ R

0

(R− r)f̃(r) dr = +∞,

due to the growth condition (3.3) on f̃ at the origin.

Hence there does not exist any uniformly integrable upper bound on Fτ and

Theorem 4.5 of [20] does not apply.

In Lemma 2.29, we found the weak value function at the origin by using the fact

that there exists a weak solution of the SDE (2.32) describing tangential motion

started from the origin. We will show in Theorem 3.4 that the SDE (2.32) has no

strong solution. Therefore, we cannot follow the same argument as in the proof of

Lemma 2.29 to find the strong value function.

In Chapter 3, we will show that the natural filtration of a weak solution of (2.32)

is generated by a Brownian motion. As a consequence, we will deduce that the

strong and weak value functions are in fact equal in Section 3.5.

Since the SDE (2.32) has no strong solution, the strong control cannot depend

only on the current position of the controlled process. In the next section, we
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2.5. Markov controls

introduce the terminology of Markov controls for such controls that depend only on

the current position of the controlled process.

2.5 Markov controls

We now define a Markov formulation of the control problem. This is a stronger

formulation than the strong and weak formulations introduced in Section 1.4.1.

Markov controls are defined similarly in Section 3 of [26, Chapter IV] and Section

3.1 of [58].

Definition 2.32. For each x ∈ D, define the set UMx ⊂ U of Markov controls as

follows. A control ν ∈ U is an element of UMx if and only if, for all t ≥ 0, νt = σ(Xσ,x
t ),

where Xσ,x is a strong solution of the SDE

dXt = σ(Xt) dBt; X0 = x,

for some Borel function σ : D → U . We then write Xν = Xσ,x.

The Markov formulation of the control problem is to find the Markov value

function vM : D → R, defined by

vM(x) = inf
ν∈UMx

Ex
[∫ τ

0

f(Xν
s ) ds+ g(Xν

τ )

]
, x ∈ D.

Proposition 2.33. For any x ∈ D, vM(x) ≥ vS(x).

Proof. This follows immediately from the inclusion UMx ⊂ U .

We will now show that, under the conditions of Theorem 2.30, the Markov for-

mulation of the control problem is equivalent to the weak and strong formulations,

with one possible exception.

Proposition 2.34. Suppose that Assumption 2.19 is satisfied, and let V : D → R
be the candidate value function defined in Definition 2.14. Let x ∈ D and suppose,

moreover, that one of the following conditions hold:

(i) f̃ is increasing on the interval (0, η);

(ii) f̃ is decreasing on the interval (0, η) and x ∈ D \ {0};

(iii) f̃ is decreasing on the interval (0, η), x = 0 and, for any r > 0,
∫ r

0
f̃(s) <∞;

(iv) f̃ is decreasing on the interval (0, η), x = 0 and, for any r > 0,
∫ r

0
sf̃(s) =∞;
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2.5. Markov controls

(v) f̃ is decreasing on the interval (0, η) and d ≥ 3.

Then the Markov value function is given by

vM(x) = vS(x) = vW (x) = V (x).

Proof. We treat each of the conditions from the statement of the proposition in turn.

(i) Let the control σ? ∈ U be as defined in (2.10). First note that, if |x| ∈ [0, r1),

then Xσ? is a strong solution of the SDE

dXt = σ1(x) dBt, X0 = x,

up to the first hitting time of radius r1, where the coefficient σ1(x) is a constant.

When
∣∣Xσ?

t

∣∣ ∈ [ri, si] for some i ≥ 1, we have σ?t = σ0(Xσ?

t ). When
∣∣Xσ?

t

∣∣ ∈ (si, ri+1)

for some i ≥ 1, we have σ?t = σ1(Xσ?

τsi
), and we can calculate that Xσ? actually solves

dXt = σ1(Xt) dBt

in this region. Therefore, fixing x ∈ D, there is a Markov control σ̃? ∈ UMx such

that

Ex
[∫ τ

0

f(X σ̃?

s ) ds+ g(X σ̃?

τ )

]
= Ex

[∫ τ

0

f(Xσ?

s ) ds+ g(Xσ?

τ )

]
.

Under the conditions of Proposition 2.15, σ? ∈ U is optimal for the strong formu-

lation of the control problem, and so vM(x) ≤ vS(x). By Proposition 2.33, we also

have vM(x) ≥ vS(x). Hence vM(x) = vS(x).

To complete the proof under condition (i), we note that the proof of Proposi-

tion 2.20 can be adapted easily to the Markov value function rather than the strong

value function. We conclude that, under condition (i), vM = vS.

(ii) Let x ∈ D \{0}. Then, taking the definition of the control σ? ∈ U from (2.11),

we see that
∣∣Xσ?

t

∣∣ > 0 for all t ≥ 0. By similar reasoning as above, there is then a

control σ̃? ∈ UMx such that

Ex
[∫ τ

0

f(X σ̃?

s ) ds+ g(X σ̃?

τ )

]
= Ex

[∫ τ

0

f(Xσ?

s ) ds+ g(Xσ?

τ )

]
.

Once again, under the conditions of Proposition 2.15, the above expression is equal

to vS(x), and so vM(x) ≤ vS(x). Combining this with Proposition 2.33, we have

vM(x) = vS(x). Noting that the proof of Proposition 2.22 can be adapted to the

case of Markov controls concludes the proof under condition (ii).
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(iii) We note that the proof of Proposition 2.24 can be easily adapted to Markov

controls, and so the result holds under condition (iii).

(iv) Under condition (iv), Proposition 2.26 shows that vS(0) = +∞. By Proposi-

tion 2.33, vM(0) ≥ vS(0), and so we also have vM(0) = +∞.

(v) The additional case included in condition (v) that has not been covered by

conditions (ii)–(iv) is when d ≥ 3, x = 0 and, for any r > 0,∫ r

0

f̃(s) ds =∞, and

∫ r

0

sf̃(s) ds <∞.

In this case, as with condition (iii), the proof of Lemma 2.28 can easily be adapted

to Markov controls, and so the result holds.

The above result does not give us the value vM(0) for dimension d = 2 in the

case where f̃ is decreasing on the interval (0, η) and, for any r > 0,∫ r

0

f̃(s) ds =∞, and

∫ r

0

sf̃(s) ds <∞.

For the strong and weak formulations of the control problem, this case is treated

by Proposition 2.27, which we will prove in Section 3.5. We conjecture that, in this

case, there is a gap between the Markov value function and the strong and weak

value functions at the origin. In Chapter 3, we will state this conjecture formally

and prove two results that support the conjecture.
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CHAPTER 3

SDES WITH NO STRONG SOLUTION ARISING FROM

A PROBLEM OF STOCHASTIC CONTROL

In this chapter, we present two examples of SDEs that have no strong solution.

These SDEs arise from considering the control problem of Chapter 2 in a regime of

moderate growth at the origin in dimension d = 2. We prove that a weak solution

of one of the SDEs generates a Brownian filtration and use this to prove equality

between weak and strong value functions. Non-existence of strong solutions leads us

to conjecture that there is a gap between the Markov value function and the strong

and weak value functions at the origin. We prove the main results of this chapter

by building on the study of an example of an SDE with no strong solution given by

Tsirelson.

3.1 Introduction

We fix d = 2 in this chapter. We consider the control problem of Chapter 2 under

Assumption 2.19 in the case that the cost function f̃ is decreasing on the interval

(0, η) and satisfies the growth conditions∫ r

0

f̃(s) ds =∞, and

∫ r

0

sf̃(s) ds, for any r > 0.

In Section 3.5, we will complete the proof of Proposition 2.27 by showing that the

weak and strong value functions are equal at the origin under the above conditions.

We will also make the conjecture that there is a gap between the Markov value

function and the strong value function. We will prove two results, Theorem 3.4 and

Theorem 3.15, which give support to this conjecture. In Theorem 3.4, we will show
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that the SDE

dXt =
1

|Xt|

[
−X2

t

X1
t

]
dBt

has a weak solution starting from the origin but no strong solution. In Theorem 3.15,

we consider SDEs whose solutions give rise to a sequence of expected costs that

approximate the strong and weak value function at the origin. We show that these

SDEs also have no strong solution starting from the origin, further supporting the

conjecture.

We now state the definitions of weak and strong solution that we will be using

in this chapter.

Notation. As different filtrations play an important role in this chapter, we will

fix the following notation. For any stochastic process X, FX = (FXt )t≥0 will denote

the augmentation of the natural filtration of X satisfying the usual conditions. Any

other filtration introduced in this chapter will also be assumed to satisfy the usual

conditions.

We take the following definitions of weak and strong solutions from Karatzas

and Shreve [38, Chapter 5]. Let b : R+ × Rd → Rd and σ : R+ × Rd → Rm be

Borel measurable functions and W an m-dimensional Brownian motion. Consider

the SDE

dXt = b(t,Xt) dt+ σ(t,Xt) dWt. (3.1)

Definition 3.1 (Strong solution). [38, Chapter 5, Definition 2.1]

Fix a probability space (Ω,F ,P) on which an m-dimensional Brownian motion W

and a random variable ξ are defined. A strong solution of the SDE (3.1) with initial

condition ξ is a continuous d-dimensional process (Xt)t≥0 such that

i. X is adapted to FW ;

ii. P [X0 = ξ] = 1;

iii. P
[∫ t

0

(
|bi(s,Xs)|+ |σij(s,Xs)|2

)
ds <∞

]
= 1, for all i, j, t ≥ 0;

iv. Xt = X0 +
∫ t

0
b(s,Xs) ds+

∫ t
0
σ(s,Xs) dWs, for all t ≥ 0.

Definition 3.2 (Weak solution). [38, Chapter 5, Definition 3.1]

A weak solution of the SDE (3.1) with initial distribution µ is a triple

((X,W ), (Ω,F ,P) ,F) ,
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where (Ω,F ,P) is a probability space, F = (Ft)t≥0 is a filtration satisfying the usual

conditions, W is an m-dimensional F-Brownian motion, and X is a d-dimensional

continuous F-adapted process, such that

i. X0 has law µ;

ii. P
[∫ t

0

(
|bi(s,Xs)|+ |σij(s,Xs)|2

)
ds <∞

]
= 1, for all i, j, t ≥ 0;

iii. Xt = X0 +
∫ t

0
b(s,Xs) ds+

∫ t
0
σ(s,Xs) dWs, for all t ≥ 0.

Remark 3.3. We emphasise that the key difference between Definition 3.1 and

Definition 3.2 is that the Brownian motion W and the process X in a weak solution

can be chosen together, and there is no requirement for X to be adapted to the

natural filtration of W .

The first main result of this chapter is the following.

Theorem 3.4. Let B be a real-valued Brownian motion and consider the SDE

dXt =
1

|Xt|

[
−X2

t

X1
t

]
dBt. (3.2)

Then there exists a weak solution of the SDE (3.2) with initial distribution δ0. How-

ever, there is no strong solution of the SDE (3.2) with initial condition X0 = 0.

The first statement of the theorem is proved by Larsson and Ruf in Theorem 4.3

of [41]. We will complete the proof of the theorem in Section 3.6.

In light of this result, we cannot simply adapt the proof of Lemma 2.29 in order

to prove Proposition 2.27. In Section 3.5, we will use properties of the filtration

generated by a weak solution of (3.2) to prove Proposition 2.27.

Theorem 3.4 also suggests that, in the case covered by Proposition 2.27, there

may be a gap between the Markov value function and the strong and weak value

functions. This is the assertion of the following conjecture.

Conjecture 3.5. Fix d = 2. Suppose that Assumption 2.19 is satisfied and that

there exists η > 0 such that f̃ is decreasing on (0, η). Suppose moreover that, for

any r > 0, ∫ r

0

f̃(s) ds =∞ and

∫ r

0

sf̃(s) ds <∞. (3.3)

Then

vM(0) > vS(0) = vW (0) = V (0).
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3.2. SDEs with no strong solution in the literature

In Proposition 2.27, we show that vS(0) = vW (0) = V (0), so the new assertion

in this conjecture is that vM(0) > vS(0).

We begin this chapter by presenting some examples of SDEs from the literature

that have a weak solution but no strong solution. We will draw similarities between

the SDE (3.2) and Tanaka and Tsirelson’s examples of SDEs with no strong solution,

as described, for example, in [53, Chapter V, §3].

In Section 3.3, we will introduce circular Brownian motion, which is used by

Émery and Schachermayer in their study of Tsirelson’s equation in [21]. We will

show that the angle process of any solution of the SDE (3.2) is a regular time-change

of a circular Brownian motion. We use the properties of circular Brownian motion

to prove that the filtration generated by any solution of the SDE (3.2) is Brownian

in Section 3.4.

In Section 3.5, we use the fact that a solution of (3.2) generates a Brownian

filtration to prove Proposition 2.27.

We prove Theorem 3.4 in Section 3.6, showing that the SDE (3.2) has no strong

solution starting from the origin, again making use of the properties of circular

Brownian motion proved in [21].

In Section 3.7, we consider a class of SDEs whose behaviour approximates that

of the SDE (3.2), in the sense that the expected costs associated to their solutions

converge. In Theorem 3.15, we will prove that these SDEs also have no strong

solution, adapting the proofs of some results on circular Brownian motion from [21].

We will end this chapter in Section 3.8 by discussing what remains to be shown

in order to prove Conjecture 3.5.

3.2 SDEs with no strong solution in the literature

We now present two examples of SDEs that are known to have no strong solution.

In this section, we collect some results from the literature on Tanaka and Tsirelson’s

equations. We will go on to show that the SDE (3.2) has similar properties to these

SDEs, in order to prove Proposition 2.27 in Section 3.5 and to prove non-existence

of strong solutions in Theorem 3.4.

3.2.1 Tanaka’s example

A well-known example of an SDE with no strong solution is Tanaka’s SDE, which

is the following one-dimensional equation:

dXt = sign(Xt) dWt. (3.4)
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3.2. SDEs with no strong solution in the literature

The SDE (3.4) admits a weak solution but not a strong solution. The proof of this

can be found, for example, in Example 3.5 of [38, Chapter 5].

To prove that there is no strong solution, the key idea is to show, using the

Itô-Tanaka formula, that the inclusion

FWt ⊆ F
|X|
t

holds for all t > 0. Then it is impossible forX to be adapted to FW , since F |X|t ( FXt
for all t > 0.

In order to prove Theorem 3.4, we show similar inclusions to the ones above,

where the increments of the solution of the SDE (3.2) play the role of the absolute

value of the solution of Tanaka’s SDE.

3.2.2 Tsirelson’s example

A further example of an SDE with no strong solution was presented by Tsirelson

in [59]. Tsirelson’s example is the one-dimensional equation

dXt = b(t,X.) dt+ dWt, (3.5)

with initial condition X0 = 0, where b is chosen as follows.

Fix a decreasing sequence (tn)n∈−N∪{0} such that t0 = 1 and limn→−∞ tn = 0.

Denote the increments of X and t by ∆Xj = Xtj − Xtj−1
and ∆tj = tj − tj−1,

respectively, and define

b(t,X.) :=
∑
k∈−N

(
∆Xk

∆tk
−
⌊

∆Xk

∆tk

⌋)
1(tk,tk+1](t). (3.6)

At a time t ∈ (tk, tk+1], b(t,X.) is the fractional part of
∆Xtk
∆tk

.

Any weak solution of the SDE (3.5) has the following properties, as proved, for

example, in Theorem 18.3 of [53, Chapter V]:

i. At any time t > 0, the natural filtration of a solution X has the decomposition

Fxt = FBt ∨ σ(B(t,X.));

ii. For each k ∈ −N, b(tk, X.) is uniformly distributed on [0, 1) and independent

of FB∞;

iii. The sigma-algebra FX0+ is trivial.

98



3.3. Circular Brownian motion

Note that the drift term (3.6) in Tsirelson’s SDE depends on the whole history

of the process X. Therefore, to define strong and weak solutions, we need to extend

Definition 3.1 and Definition 3.2 in the same way as in Definition 3.14 of [38, Chapter

5]. As remarked in [53, Chapter V], for bounded drifts depending only on the current

value of the process, Zvonkin proved in [67] that a strong solution of (3.5) always

exists.

In the following sections, we refer extensively to the work of Émery and Schacher-

mayer in [21], where they demonstrate a connection between Tsirelson’s example and

circular Brownian motion. In [21], Émery and Schachermayer use this connection

to show that the natural filtration of a weak solution of Tsirelson’s equation (3.5) is

generated by a Brownian motion.

3.3 Circular Brownian motion

The key observation in our proof of Theorem 3.4 is that the angle of any solution

of the SDE (3.2) is a deterministic time-change of a circular Brownian motion. We

take the following definition of a circular Brownian motion from the paper [21] of

Émery and Schachermayer.

Definition 3.6 (Circular Brownian motion). Let (φt)t∈R be a continuous R/2πZ-

valued process. For any s, t ∈ R with s ≤ t, denote by
∫ t
s

dφr the R-valued random

variable that depends continuously on t, vanishes for t = s, and satisfies∫ t

s

dφr ≡ φt − φs mod 2π.

Let F = (Ft)t∈R be a filtration. We say that φ is a circular Brownian motion for F
if φ is adapted to F and, for each s ∈ R, the process

[s,∞) 3 t 7→
∫ t

s

dφr

is a standard Brownian motion for the filtration (Ft)t∈[s,∞).

With this definition in hand, we now show how a circular Brownian motion arises

in our example. By Theorem 4.3 of [41], we know that there exists a weak solution

((X,B), (Ω,F ,P) ,F) of the SDE (3.2). We can apply Itô’s formula to show that

there is an R/2πZ-valued process θ, which we call the angle process of the solution,

such that

Xt =
√
t

[
cos θt

sin θt

]
, for all t > 0,
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3.3. Circular Brownian motion

and θ satisfies

dθt = t−
1
2 dBt. (3.7)

We now show that θ is a circular Brownian motion, up to a time-change. We define

a regular time-change as in [21].

Definition 3.7. A function a : R → (0,∞) is a regular time-change if a is an

increasing absolutely continuous bijection with absolutely continuous inverse.

Proposition 3.8. Let ((X,B), (Ω,F ,P) ,F) be a weak solution of the SDE (3.2).

Then the associated angle process (θt)t>0 is a regular time-change of a circular Brow-

nian motion.

Proof. Define the function a : R → (0,∞) by a(t) = et, t ∈ R. Then a is a regular

time-change. Define the time-changed process

(θ̃t)t∈R = (θa(t))t≥0.

Since, for any t > 0, there is a one-to-one deterministic correspondence between

Xt ∈ R2 and θt ∈ R/2πZ, the angle process θ is adapted to F. Now define the

time-changed filtration

F̃ = (F̃t)t∈R =
(
Fa(t)

)
t∈R .

We will show that θ̃ is a circular Brownian motion for F̃.

Since a is a regular time-change, θ̃ is adapted to F̃. We also see that the R/2πZ-

valued process θ̃ is continuous. Now fix s ∈ R and consider the process

[s,∞) 3 t 7→
∫ t

s

dθ̃r =

∫ t

s

a(r)−
1
2 dBa(r),

using the expression (3.7).

Since B is an F-Brownian motion and a is a regular time-change, we have that

[s,∞) 3 t 7→
∫ t

s

dBa(r)

is a (F̃t)t∈[s,∞)-martingale, with quadratic variation〈∫ ·
s

dBa(r)

〉
t

= a(t)− a(s),

and so

[s,∞) 3 t 7→
∫ t

s

dθ̃r
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3.4. Brownian filtrations

is a continuous (F̃t)t∈[s,∞)-martingale. We can calculate the quadratic variation〈∫ ·
s

dθ̃r

〉
t

=

∫ t

s

a(r)−1 da(r) = t− s,

since a(r) = er, for any r ∈ R.

Therefore, by Lévy’s characterisation of Brownian motion, the process

[s,∞) 3 t 7→
∫ t

s

dθ̃r

is an (F̃t)t∈[s,∞)-Brownian motion. Hence θ̃ is a circular Brownian motion for F̃.

We now state two key properties of circular Brownian motion that are proved

in [21]. For a circular Brownian motion φ, define the innovation filtration H to be

the filtration generated by the increments of φ; i.e.

Ht := ({φs − φr : −∞ < r ≤ s ≤ t}) , t ∈ R.

Then Proposition 1 of [21] states that, for any t ∈ R,

i. φt is uniformly distributed;

ii. φt is independent of H∞.

We note the parallel between these properties of circular Brownian motion and the

properties of Tsirelson’s equation (3.5) stated in Section 3.2.2.

The aim of Émery and Schachermayer’s paper [21] is to show that solutions of

Tsirelson’s equation generate a Brownian filtration, as we discuss in the following

section.

3.4 Brownian filtrations

In Proposition 2 of [21], Émery and Schachermayer define a Brownian filtration as

follows.

Definition 3.9 (Brownian filtration). A filtration is called Brownian if it is the

natural filtration of a real-valued Brownian motion starting from the origin.

Note that this definition agrees with the definition of a strong Brownian filtration

given in Mansuy and Yor’s book [44, Definition 6.1].
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3.4. Brownian filtrations

In the case of Tanaka’s SDE (3.4), any weak solution is a Brownian motion, as

discussed in Example 3.5 of [38, Chapter 5], and so in this case a weak solution

trivially generates a Brownian filtration.

In Proposition 4 of [21], Émery and Schachermayer show that any deterministic

time-change of a circular Brownian motion generates a Brownian filtration. The pa-

per [21] concludes with a proof that there is a bijection between any weak solution of

Tsirelson’s equation and a circular Brownian motion. From this, the authors deduce

that any weak solution of Tsirelson’s equation generates a Brownian filtration.

In [19], Dubins, Feldman, Smorodinsky and Tsirelson settled an open question

by presenting an example of a process that does not generate a Brownian filtration.

Their proof relies on the concept of standardness, an invariant of filtrations first

introduced by Vershik in the setting of ergodic theory in his doctoral thesis [62].

Another example of a process that does not generate a Brownian filtration is the

diffusion that Walsh defined in [64], now known as Walsh’s Brownian motion. In

[60], Tsirelson proved that Walsh’s Brownian motion does not generate a Brownian

filtration, by introducing a new invariant of filtrations known as cosiness. Warren

later used the same technique in [65] to prove that sticky Brownian motion also

does not generate a Brownian filtration. In [22], Émery and Schachermayer provide

a discussion of the relationship between the two invariants standardness and cosiness,

along with further references to examples of their application.

We will now show that a weak solution of our SDE (3.2) generates a Brownian

filtration. This filtration is therefore both standard and cosy, although we do not

need to appeal to either of these notions here. The result follows directly from the

relationship with circular Brownian motion that we proved in Proposition 3.8 above.

Corollary 3.10. Let ((X,B), (Ω,F ,P) ,F)) be a weak solution of the SDE (3.2).

Then X generates a Brownian filtration.

Proof. Suppose that a weak solution of (3.2) exists, and write

Xt =
√
t

[
cos θt

sin θt

]
,

where θ is the angle process of the solution. Let FX = (FXt )t≥0 be the filtration

generated by X. Then, since X0 = 0 is fixed, and Xt is a deterministic bijective

function of θt for each t > 0, we have

FXt = F θt for all t ≥ 0,

where Fθ = (F θt )t≥0 is the filtration generated by θ.

102



3.5. Proof of Proposition 2.27

We have seen in Proposition 3.8 that (θt)t>0 is a regular time-change of a circular

Brownian motion. Propositions 2 and 3 of [21] together immediately imply that

the natural filtration of any regular time-change of a circular Brownian motion is

Brownian.

Hence Fθ is Brownian, and it follows that FX is Brownian.

We now use the fact that a weak solution of (3.2) generates a Brownian filtration

to complete the proof of Proposition 2.27, showing that the weak and strong value

functions are equal at the origin in the intermediate growth regime.

3.5 Proof of Proposition 2.27

Fix a probability space (Ω̃, F̃ , P̃) on which a R-valued Brownian motion B is defined

with natural filtration FB = (FB
t )t≥0. We know that there exists a weak solution

((X,W ), (Ω,F ,P) ,F) of (3.2) by Theorem 4.3 of [41]. We will show that there

exists an FB-martingale X̃ that is equal in law to X. This is the key step required

to complete the proof of Proposition 2.27.

We will make use of the notion of isomorphims between filtered probability

spaces in the following proof. We take the following definitions from the paper [22]

of Émery and Schachermayer.

Definition 3.11 (Isomorphism). Given a probability space (Ω,F ,P), denote the

set of random variables on that probability space by L0 (Ω,F ,P). An embedding of

(Ω,F ,P) into another probability space (Ω,F ,P) is a map

Ψ : L0 (Ω,F ,P)→ L0(Ω,F ,P)

that commute with Borel operations on random variables and preserves probability

laws.

An isomorphism from (Ω,F ,P) to (Ω,F ,P) is an embedding that is bijective.

Remark 3.12. We follow the same convention as in [42] and also write Ψ for the map

in the above definition acting on sigma-algebras, stochastic processes and filtrations.

Definition 3.13. Two filtered probability spaces (Ω,F ,P,F) and (Ω,F ,P,F), with

F = (Ft)t≥0 and F = (F t)t≥0, are isomorphic if there exists an isomorphism

Ψ : L0(Ω,F∞,P)→ L0(Ω,F∞,P)

such that Ψ(F) = F.
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3.5. Proof of Proposition 2.27

In [42], Laurent gives similar definitions to the above for filtrations in discrete

negative time. We will refer to results from [42] in the following proof.

Proof of Proposition 2.27. We have already proved the result for dimensions d ≥ 3

in Lemma 2.28. We now fix d = 2, as in the rest of Chapter 3. In Lemma 2.29, we

showed that vW (0) = V (0). It remains to show that vS(0) = V (0).

Fix a probability space (Ω̃, F̃ , P̃) on which a R-valued Brownian motion B is

defined with natural filtration FB = (FB
t )t≥0, and recall the definition of the con-

trol set U from the definition of the strong formulation of the control problem in

Section 1.4.1. We will construct an FB-martingale X ν̃ such that, for any t ≥ 0,

X ν̃
t =

∫ t

0

ν̃s dBs,

for some ν̃ ∈ U , and

E0

[∫ τη

0

f(X ν̃
s ) ds

]
= 2

∫ η

0

ξf̃(ξ) dξ.

As noted in the proof of Lemma 2.29, Theorem 4.3 of [41] gives us a weak solution

((X,B′, (Ω,F ,P) ,F) of the SDE (3.2). By Corollary 3.10, the process X generates

a Brownian filtration. That is, there exists a Brownian motion W on the probability

space (Ω,F ,P) with natural filtration FW = (FWt )t≥0 such that the natural filtration

of X is equal to FW .

Since B and W are both R-valued Brownian motions, they have have the same

law and so, as noted in Section 1.6 of [42], the filtered probability spaces

(Ω̃, F̃ , P̃,FB) and (Ω,F ,P,FW )

are isomorphic, as defined in Definition 3.13. That is, there exists an isomorphism

Ψ : L0(Ω,FW∞ ,P)→ L0(Ω̃, F̃B∞, P̃),

as defined in Definition 3.11, such that

Ψ(FW ) = FB.

Define a process X̃ on the probability space (Ω̃,FB∞, P̃) by

(X̃t)t≥0 = Ψ ((Xt)t≥0) .
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3.5. Proof of Proposition 2.27

For any t ≥ 0, we have that Ψ(FWt ) = FBt and

Ψ : L0(Ω,FWt ,P)→ L0(Ω̃, F̃Bt , P̃)

is an isomorphism, as noted after the definition of an isomorphism in [22]. Therefore,

since X is adapted to FW , it follows that X̃ is adapted to FB.

Now fix 0 < s < t. Then we can use Lemma 5.3 of [42] to apply the isomorphism

Ψ to a conditional expectation and, since X is an FW -martingale, we see that

EP̃
[
X̃t

∣∣ FBs ] = EP̃ [Ψ(Xt)
∣∣ Ψ(FWs )

]
= Ψ

(
EP [Xt | FWs

])
= Ψ(Xs) = X̃s.

Hence X̃ is an FB-martingale. By the definition of an isomorphism in Definition 3.11,

we also have that the processes X and X̃ are equal in law.

We now apply the martingale representation theorem, as found for example in

Theorem 3.4 of [51, Chapter 5]. This result implies that t 7→ X̃t is continuous and

there exists an FB-progressively measurable R-valued process ν̃ such that, for any

t ≥ 0, we have the representation

X̃t =

∫ t

0

ν̃s dBs. (3.8)

We can also deduce that X̃ has quadratic variation t 7→ 〈X̃〉t = t, as follows. We

know that the quadratic variation of X is t 7→ 〈X〉t = t, and so t 7→ |Xt|2 − t is an

FW -martingale. Using Lemma 5.3 of [42] again, we calculate that, for any 0 < s < t,

EP̃
[∣∣∣X̃t

∣∣∣2 − t ∣∣∣ FBs ] = EP̃ [Ψ(|Xt|2)
∣∣ Ψ(FWs )

]
− t

= Ψ
(
EP [|Xt|2 | FW

])
− t

= Ψ(|Xs|2 + t− s)− t

=
∣∣∣X̃s

∣∣∣2 − s.
Hence t 7→

∣∣∣X̃t

∣∣∣2 − t is an FB-martingale and so, for any t ≥ 0, 〈X̃〉t = t. From the

representation (3.8), we also have that

t 7→ 〈X̃〉t =

∫ t

0

Tr(ν̃sν̃
>
s ) ds.
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3.6. Non-existence of strong solutions

Hence Tr(ν̃tν̃
>
t ) = 1, for any t ≥ 0, and so ν̃ ∈ U .

We can now follow the same arguments as in the proof of Lemma 2.29 to complete

the proof of Proposition 2.27. Since the process X̃ has the same law as X, we have

E0

[∫ τη

0

f(X̃s) ds

]
= E0

[∫ τη

0

f(Xs) ds

]
= 2

∫ η

0

ξf̃(ξ) dξ.

Therefore, we can make a similar calculation as in the proof of Lemma 2.29 using

the dynamic programming principle to see that

vS(0) ≤ E0

[∫ τη

0

f(X̃s) ds+ vS(X̃τη)

]
= 2

∫ η

0

ξf̃(ξ) dξ + V (y),

for any y ∈ D such that |y| = η.

Using (2.31), we also have that, for any y ∈ D with |y| = η,

vS(0) ≥ vW (0) ≥ V (0) = 2

∫ η

0

ξf̃(ξ) dξ + V (y).

We conclude that

vS(0) = vW (0) = V (0).

We have now shown that the strong and weak formulations of the control problem

are equivalent. In the remainder of this chapter, we will prove two results that

support Conjecture 3.5, which asserts that there is a gap between the strong and

Markov value functions.

In the next section, we will show that the SDE (3.2) has no strong solution,

and so the Brownian motion that generates the natural filtration of a weak solution

cannot be the driving Brownian motion of the SDE.

3.6 Non-existence of strong solutions

The proof of non-existence of a strong solution in Theorem 3.4 will rely on the fol-

lowing property of the angle process that arises from the theory of circular Brownian

motion discussed in Section 3.3.

Lemma 3.14. Let W be a real-valued Brownian motion with natural filtration
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3.6. Non-existence of strong solutions

(FWt )t≥0 and let φ be an R/2πZ-valued process. Suppose that φ satisfies∫ t

s

dφr =

∫ t

s

r−
1
2 dWr, for all 0 < s ≤ t,

where the random variables on the left-hand side are defined analogously to those in

Definition 3.6.

Then φ cannot be adapted to (FWt )t≥0.

Proof. Suppose for contradiction that φ is adapted to the natural filtration of W .

Define the regular time-change a : R → (0,∞) by a(t) = et for all t ∈ R, as in

the proof of Proposition 3.8, and denote the time-changed processes

(φ̃t)t∈R = (φa(t))t>0,

(W̃t)t∈R = (Wa(t))t>0.

Since the time-change is deterministic, the natural filtrations (F̃φt )t∈R and (F̃Wt )t∈R

of the time-changed processes φ̃ and W̃ are given by

F̃φt = Fφa(t), F̃Wt = FWa(t), for all t ∈ R.

Hence φ̃ is adapted to (F̃Wt )t∈R.

By the same arugments as in the proof of Proposition 3.8, φ̃ is a circular Brownian

motion for (F̃Wt )t∈R and, for any s, t ∈ R with s ≤ t,∫ t

s

dφ̃r =

∫ t

s

a(r)−
1
2 dW̃r. (3.9)

To arrive at a contradiction, we will exploit the following property of circular

Brownian motion proved in Proposition 1 of [21].

Let (Ht)t∈R be the innovation filtration of φ̃. Recall that, for each t ∈ R, Ht is

the sigma-algebra generated by the increments of φ̃ up to time t; i.e.

Ht := σ
({
φ̃s − φ̃r : −∞ < r ≤ s ≤ t

})
.

Then we have

Ht ⊆ F̃φt ⊆ F̃Wt , t ∈ R.

In fact, the first inclusion must be strict, as we now show. As remarked in

Section 3.3, Proposition 1 of [21] tells us that, for each t ∈ R, the value of the

circular Brownian motion φ̃t is uniformly distributed on [0, 2π) and, moreover, φ̃t is
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3.6. Non-existence of strong solutions

independent of H∞. Hence, for each t ∈ R,

Ht ( F̃φt ⊆ F̃Wt . (3.10)

Fix 0 < s ≤ t. Then, using the relation (3.9), we can deduce that the increment

W̃t − W̃s =

∫ t

s

a(r)
1
2 dφ̃r

is Ht-measurable.

Now, taking the limit as s → −∞, W̃s = Wes → 0 almost surely, and so W̃t is

Ht-measurable. This implies that

F̃Wt ⊆ Ht,

contradicting the strict inclusion in (3.10).

We are now ready to prove Theorem 3.4, showing that the SDE (3.2) has no

strong solution starting from the origin.

Proof of Theorem 3.4. As noted after the statement of the theorem, the existence

of a weak solution is proved by Larsson and Ruf in Theorem 4.3 of [41]. We now

prove non-existence of strong solutions.

Suppose for contradiction that there exists a strong solution X of the SDE (3.2)

with initial condition X0 = 0. Then X is adapted to the filtration (FBt )t≥0; i.e

FXt ⊆ FBt , t ≥ 0. (3.11)

Let θ be the angle process of X. Then, since θ satisfies (3.7), we have∫ t

s

dθr =

∫ t

s

r−
1
2 dBr,

for any 0 < s ≤ t. Therefore, by Lemma 3.14, θ is not adapted to (FBt )t≥0.

We have already seen in the proof of Corollary 3.10 that

F θt = FXt , for all t ≥ 0.

Therefore X is not adapted to (FBt )t≥0. This contradicts the inclusion (3.11). Hence

the SDE (3.2) has no strong solution starting from the origin.

Having proved Theorem 3.4, we note that this supports Conjecture 3.5, as it
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3.7. Additional SDEs without strong solutions

rules out one way of constructing a Markov control that could be used to adapt the

proof of Lemma 2.29. In Section 3.8, we will derive the form of other SDEs whose

solutions have deterministically increasing radius and could therefore play the same

role as solutions of (3.2). Proving that these SDEs also have no strong solution is a

necessary step in proving the assertion of Conjecture 3.5.

Furthermore, we need to check whether there exist strong solutions of SDEs that

approximate the desired behaviour at the origin. The result in the following section

provides a partial negative answer to this question.

3.7 Additional SDEs without strong solutions

In order to further support Conjecture 3.5, we will show that the following SDEs

have no strong solution.

Theorem 3.15. Let B be a one-dimensional Brownian motion and let λ ∈ (0,
√

2
2

)

be a fixed constant. Then there is no strong solution of the SDE

dXt =
1

|Xt|

[
λX1

t −
√

1− λ2X2
t

λX2
t +
√

1− λ2X1
t

]
dBt; X0 = 0. (3.12)

Before proving this result, we explain the relationship to Conjecture 3.5. As

noted in Remark 2.25, the approximation used in Proposition 2.24 is not valid under

the assumptions of Conjecture 3.5, since
∫ r

0
f̃(s) ds = ∞ for any r > 0. However,

we will show that, in the regime λ ∈ (0,
√

2
2

), the expected cost associated to the

process Xλ is finite and approximates the value V (0) in the limit λ → 0. We will

work with the radius process to calculate this expected cost.

We first observe that the squared radius process can be rescaled to a squared

Bessel process, as defined in Definition 1.1 of [51, Chapter XI]. We will show that

the event of returning to the origin before leaving the domain satisfies the following

zero-one law. For λ ≤
√

2
2

, Xλ returns to the origin with probability zero; for λ >
√

2
2

,

Xλ returns to the origin with probability one. The critical value λ =
√

2
2

corresponds

to the 2-dimensional squared Bessel process.

Proposition 3.16. Let λ ∈ (0, 1) and suppose that Xλ solves the SDE (3.12). Write

Zλ
t =

∣∣Xλ
t

∣∣2 for any t ≥ 0 and define the rescaled process Z̃λ by Z̃λ
t = Zλ−2t.

Then Z̃λ is the square of a δ-dimensional Bessel process started from 0, where

δ = λ−2.
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Moreover, defining τλ0 := inf{t > 0: Zλ
t = 0}, we have

P0 [τ0 <∞] =

0, λ ∈ (0,
√

2
2

],

1, λ ∈ (
√

2
2
, 1).

Proof. Applying Itô’s formula, as in Lemma 2.2, we see that Zλ satisfies

dZλ
t = 2λ

√
Zλ

t dBt + dt,

with Zλ
0 = 0. Note that

t 7→ B̃t := λBλ−2t

is a standard Brownian motion. Therefore, for any t ≥ 0,

Z̃λ
t = 2

∫ t

0

√
Z̃λ
s dB̃s + λ−2t.

Set δ = λ−2. Then, referring to Definition 1.1 of [51, Chapter XI], we see that Z̃λ is

the square of a δ-dimensional Bessel process.

Now suppose that λ ∈ (0,
√

2
2

], so that

δ = λ−2 ≥ 2.

The discussion in [51, Chapter XI] that immediately precedes Proposition 1.5 tells

us that the set {0} is polar for Z̃λ. By the definition of a polar set given in Definition

2.6 of [51, Chapter V], we have that Z̃λ almost surely never returns to the origin in

finite time, and the rescaled process Zλ has the same property.

On the other hand, suppose that λ ∈ (
√

2
2
, 1). Then

δ = λ−2 < 2,

and so, by the same discussion in [51, Chapter XI], Z̃λ returns to the origin in finite

time with probability 1. Again the rescaled process Zλ has the same property.

Remark 3.17. Let λ ∈ (0,
√

2
2

] and Define the process Rλ by Rλ
t =

∣∣Xλ
t

∣∣, for t ≥ 0.

By Proposition 3.16, Zλ almost surely never returns to the origin after time 0.

Therefore, we can apply Itô’s formula to Rλ
t =

√
Zλ
t to calculate that Rλ satisfies

dRλ
t = λ dBt +

1− λ2

2Rλ
t

dt; Rλ
0 = 0. (3.13)

We note that the SDE (3.13) has a unique strong solution after time zero. This
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can be proved by adapting the standard proof of existence and uniqueness for SDEs

whose coefficients are Lipschitz and have linear growth, as found for example in

Theorem 2.9 of [38, Chapter 5].

We now return to calculating the expected cost in the regime λ ∈ (0,
√

2
2

).

Proposition 3.18. Suppose that the growth condition (3.3) holds and let η > 0 be

such that f̃ is decreasing and positive on the interval (0, η).

For λ ∈ (0,
√

2
2

), if Xλ is a strong solution of the SDE (3.12), then

0 ≤ E0

[∫ τη

0

f(Xλ
s ) ds

]
<∞,

and, moreover,

lim
λ↓0

E0

[∫ τη

0

f(Xλ
s ) ds

]
= 2

∫ η

0

ξf̃(ξ) dξ.

Proof. Fix r, ε ∈ (0, η) such that 0 < ε < r < η. We will calculate Er
[∫ τε∧τη

0
f(Xλ

s ) ds
]

and show later that

E0

[∫ τη

0

f(Xλ
t ) dt

]
= lim

r→0
lim
ε→0

Er
[∫ τε∧τη

0

f(Xλ
t ) dt

]
.

Let m be the speed measure of Rλ and G the Green’s function, as defined in

Definition B.3 and Definition B.4, respectively. Then, by Proposition B.5,

Er
[∫ τε∧τη

0

f(Xλ
s ) ds

]
= Er

[∫ τε∧τη

0

f̃(Rλ
s ) ds

]
=

∫ η

ε

f̃(ξ)G(r, ξ)m(dξ).

The speed measure m is given by∫
m(dξ) =

∫
2c1−λ−1

λ2ξ1−λ−2 dξ,

for some constant c, and the Green’s function G : (ε, η)2 → R is given by

G(r, ξ) =


c−(1−λ−1)λ2

2λ2−1

(
ξ2−λ

−2−ε2−λ−2
)(
η2−λ

−2−r2−λ−2
)

η2−λ−2−ε2−λ−2 , ξ ∈ [ε, r],

c−(1−λ−1)λ2

2λ2−1

(
r2−λ

−2−ε2−λ−2
)(
η2−λ

−2−ξ2−λ−2
)

η2−λ−2−ε2−λ−2 , ξ ∈ [r, η].
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Therefore, we calculate that

Er
[∫ τε∧τη

0

f(Xλ
s ) ds

]
=

2

2λ2 − 1

η2−λ−2 − r2−λ−2

η2−λ−2 − ε2−λ−2

(∫ r

ε

ξf̃(ξ) dξ − ε2−λ−2

∫ r

ε

ξλ
−2−1f̃(ξ) dξ

)
+

2

2λ2 − 1

r2−λ−2 − ε2−λ−2

η2−λ−2 − ε2−λ−2

(
η2−λ−2

∫ η

r

ξλ
−2−1f̃(ξ) dξ −

∫ η

r

ξf̃(ξ) dξ

)
.

(3.14)

We now take the limit as ε→ 0. The limits

lim
ε↓0

∫ r

ε

ξf̃(ξ) dξ and lim
ε↓0

∫ r

ε

ξλ
−2−1f̃(ξ) dξ

are finite under the growth condition (3.3), since λ−2−1 > 1. Also, since 2−λ−2 < 0,

we have

lim
ε↓0

η2−λ−2 − r2−λ−2

η2−λ−2 − ε2−λ−2 = 0,

and

lim
ε↓0

η2−λ−2 − r2−λ−2

η2−λ−2 − ε2−λ−2 ε
2−λ−2

= lim
ε↓0

η2−λ−2 − r2−λ−2(
η
ε

)2−λ−2

− 1
= r2−λ−2 − η2−λ−2

.

Therefore the limit of the first term in (3.14) is

lim
ε↓0

2

2λ2 − 1

η2−λ−2 − r2−λ−2

η2−λ−2 − ε2−λ−2

(∫ r

ε

ξf̃(ξ) dξ − ε2−λ−2

∫ r

ε

ξλ
−2−1f̃(ξ) dξ

)
=

2

2λ2 − 1

(
η2−λ−2 − r2−λ−2

)
lim
ε↓0

∫ r

ε

ξλ
−2−1f̃(ξ) dξ.

Under the growth condition (3.3), noting that β? ∈ [1, 2) and so λ−2 − β? > 0, we

find that there is a constant C > 0 such that∫ r

ε

ξλ
−2−1f̃(ξ) dξ ≤ C

∫ r

ε

ξλ
−2−1−β? dξ

=
C

λ−2 − β?
(
rλ
−2−β? − ελ−2−β?

)
ε↓0−−→ C

λ−2 − β?
rλ
−2−β? .

Considering the second term in (3.14), we have

lim
ε↓0

r2−λ−2 − ε2−λ−2

η2−λ−2 − ε2−λ−2 = 1,
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and so

lim
ε↓0

Er
[∫ τε∧τη

0

f(Xλ
s ) ds

]
≤ 2

2λ2 − 1

C

λ−2 − β?
(
η2−λ−2

rλ
−2−β? − r2−β?

)
+

2

2λ2 − 1

(
η2−λ−2

∫ η

r

ξλ
−2−1f̃(ξ) dξ −

∫ η

r

ξf̃(ξ) dξ

)
.

Note that λ−2 − β? > 0 and 2− β? > 0, so the first term in the sum vanishes in

the limit r ↓ 0.

Again, using the growth condition (3.3),

lim
r↓0

∫ η

r

ξf̃(ξ) dξ =

∫ η

0

ξf̃(ξ) dξ ∈ (−∞,∞),

and, for some constant C ′ > 0,∫ η

r

ξλ
−2−1f̃(ξ) dξ ≤ C ′

∫ η

r

ξλ
−2−1−β? dξ

=
C ′

λ−2 − β?
(
ηλ
−2−β? − rλ−2−β?

)
r↓0−−→ C ′

λ−2 − β?
ηλ
−2−β? .

Therefore

lim
r↓0

lim
ε↓0

Er
[∫ τε∧τη

0

f(Xλ
s ) ds

]
≤ 2

1− 2λ2

(∫ η

0

ξf̃(ξ) dξ − C ′

λ−2 − β?
η2−β?

)
. (3.15)

We now prove that

E0

[∫ τη

0

f(Xλ
s ) ds

]
= lim

r↓0
lim
ε↓0

Er
[∫ τε∧τη

0

f(Xλ
s ) ds

]
.

First we consider the limit ε ↓ 0. We showed in Proposition 3.16 that Pr [τ0 < τη] =

0. Therefore, with probability one,∫ τ0∧τη

0

f(Xλ
s ) ds =

∫ τη

0

f(Xλ
s ) ds,

and so

lim
ε↓0

∫ τε∧τη

0

f(Xλ
s ) ds =

∫ τη

0

f(Xλ
s ) ds, almost surely.

Since f ≥ 0 in the ball Bη(0), the integral inside the limit is monotone increasing

as ε decreases to zero. Therefore we can apply the monotone convergence theorem
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to see that

lim
ε↓0

Er
[∫ τε∧τη

0

f(Xλ
s ) ds

]
= Er

[∫ τη

0

f(Xλ
s ) ds

]
.

We now wish to take the limit as r ↓ 0. By the Markov property, we have

Er
[∫ τη

0

f(Xλ
s ) ds

]
= E0

[∫ τη

τr

f(Xλ
s ) ds

]
.

We also have that ∫ τη

τr

f(Xλ
s ) ds

r→0−−→
∫ τη

0

f(Xλ
s ) ds a.s.,

where the convergence is monotone, since f is positive in Bη(0). Therefore we can

apply the monotone convergence theorem again to get

lim
r↓0

Er
[∫ τη

0

f(Xλ
s ) ds

]
= E0

[∫ τη

0

f(Xλ
s ) ds

]
.

Now, for any λ ∈ (0,
√

2
2

), the bound in (3.15) gives us

0 ≤ E0

[∫ τη

0

f(Xλ
s ) ds

]
≤ 2

1− 2λ2

∫ η

0

ξf̃(ξ) dξ − 2

1− 2λ2

C ′

λ−2 − β?
η2−β? <∞.

Taking the limit as λ ↓ 0, we have

lim
λ↓0

E0

[∫ τη

0

f(Xλ
s ) ds

]
≤ 2

∫ η

0

ξf̃(ξ) dξ.

To conclude the proof, we refer to Lemma 2.29 to see that we have the reverse

inequality

E0

[∫ τη

0

f(Xλ
s ) ds

]
≥ inf

σ∈U
E0

[∫ τη

0

f(Xσ
s ) ds

]
≥ 2

∫ η

0

ξf̃(ξ) dξ,

for any λ ∈ (0,
√

2
2

).

Hence

lim
λ↓0

E0

[∫ τη

0

f(Xλ
s ) ds

]
= 2

∫ η

0

ξf̃(ξ) dξ.

Proposition 3.18 shows that, if there exist strong solutions of the SDE (3.12)

for all λ ∈ (0,
√

2
2

), then we can take a sequence of such processes for values of

λ approaching 0 such that the associated expected costs approximate V (0). This

would disprove Conjecture 3.5, since any strong solution of (3.12) gives rise to a

Markov control.
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We now turn to the proof of Theorem 3.15, where we show that such strong

solutions do not exist. Here, the angle process of a solution of (3.12) is no longer a

circular Brownian motion, as was the case for solutions of (3.2) in Proposition 3.8,

but this process does have similar properties. We will show that, conditioned on the

value of the radius, the angle process is uniformly distributed and independent of

its increments. Here, we adapt Émery and Schachermayer’s proof that the value of

a circular Brownian motion at any time is uniformly distributed and independent of

its increments from Proposition 1 of [21]. We will deduce the result of Theorem 3.15

from the following proposition.

Proposition 3.19. Fix λ ∈ (0,
√

2
2

). For any weak solution ((X,W ), (Ω,F ,P) ,F)

of the SDE (3.12), let R be the radius process and θ the angle process, so that we

can write

Xt = Rt

[
cos θt

sin θt

]
, t > 0.

Denote the hitting times of R by

τρ := inf{t > 0: Rt = ρ}.

Then, for any ρ > 0,

θτρ ∼ Unif[0, 2π).

Moreover, θτρ is independent of

H∞ := σ ({θt − θs : 0 < s < t <∞}) .

To prove this result, we will require the following technical lemma on the distri-

bution of increments of the angle process.

Lemma 3.20. Let θ be the angle process defined in Proposition 3.19 and fix ρ > 0.

Then, for any φ ∈ [0, 2π),

P
[(
θτρ − θτ2−1ρ

)
∈ {φ+ 2πm, m ∈ Z}

]
< 1.

Proof. Suppose for contradiction that there exists φ ∈ [0, 2π) such that

P
[(
θτρ − θτ2−1ρ

)
∈ {φ+ 2πm, m ∈ Z}

]
= 1. (3.16)

Let R be the radius process defined in Proposition 3.19 and recall that R satisfies

the SDE

dRt = λ dWt +
1− λ2

2Rt

dt; R0 = 0. (3.13)
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By Itô’s formula, we calculate that θ satisfies

dθt =
√

1− λ2R−1
t dWt − λ

√
1− λ2R−2

t dt. (3.17)

We will use a coupling argument to arrive at a contradiction. Consider two indepen-

dent weak solutions (R1, θ1), (R2, θ2) of the SDEs (3.13) and (3.17) on a common

probability space. For i = 1, 2 and any r ≥ 0, denote the hitting time

τ ir := inf{t > 0: Ri
t = r}.

Note that, as we observed in Remark 3.17, the SDE (3.13) for R has a unique strong

solution after the first hitting time of radius 2−1ρ. Therefore, given the value of θ

at this radius, the process θ is uniquely defined via the SDE (3.17). Hence all weak

solutions of the SDEs (3.13) and (3.17) must have the same law after the first hitting

time of radius 2−1ρ.

Fix ψ1, ψ2 ∈ [0, 2π) such that ψ1 6≡ ψ2 mod 2π, and shift θ1 and θ2 to define

θψ
1

t := θ1
t + ψ1 − θ1

τ1
2−1ρ

and θψ
2

t := θ2
t + ψ2 − θ2

τ2
2−1ρ

.

Then, at the first hitting time of radius 2−1ρ, the values of the processes θψ
1

and

θψ
2

are almost surely equal to ψ1 and ψ2, respectively, and these shifted processes

still satisfy the SDE (3.17).

Suppose that there exists some radius η ∈ (2−1ρ, ρ) such that

θψ
1

τ1η
= θψ

2

τ2η
.

Then we can couple the two processes as follows. Define θ̃ by

θ̃t =

θ
ψ2

t , t < τ 2
η ,

θψ
1

τ1η−τ2η+t, t ≥ τ 2
η .

Then we see that the trajectories of (R1, θψ
1
) and (R2, θ̃) coincide on the set (η,R)×

[0, 2π). Moreover, by the Markov property, the process θ̃ still satisfies the SDE

(3.17). Therefore, by condition (3.16),

θψ
1

τρ ≡ ψ1 + φ mod 2π,

θ̃τρ ≡ ψ2 + φ mod 2π.

But, by our choice of ψ1, ψ2, the above values are not equal, contradicting the
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coupling of the trajectories. This shows that, on the set (2−1ρ, ρ) × [0, 2π), the

supports of (R1, θψ
1
) and (R2, θψ

2
) must be disjoint.

Since our choice of the shifts ψ1 and ψ2 was arbitrary, the only feasible supports

of (Ri, θψ
i
) are the rays connecting the points (2−1ρ, ψi) and (ρ, ψi), for i = 1, 2.

This would imply that θψ
1

and θψ
2

are deterministic, but this is not the case for

λ < 1.

Hence there is no φ ∈ [0, 2π) such that (3.16) holds.

We now use this lemma to prove Proposition 3.19 on the uniformity and inde-

pendence properties of the angle process.

Proof of Proposition 3.19. Recall that R satisfies the SDE (3.13) and θ satisfies the

SDE (3.17).

Fix ρ > 0. We show that θτρ is uniformly distributed on [0, 2π) by using the

characteristic function of the random variable θτρ on the torus, following the proof

of Proposition 1 of [21]. For any φ ∈ R/2πZ and k ∈ Z, define the characteristic

function

ek(φ) := exp{iky}, for any y ∈ R such that y ≡ φ mod 2π.

Fix k ∈ Z \ {0} and ρ1 > 0. We aim to show that E[ek(θτρ1 )] = 0.

Let ρ0 ∈ (0, ρ1). Then, writing

θτρ1 = θτρ0 +

∫ τρ1

τρ0

dθs,

we have

∣∣EP [ek(θτρ1 )
]∣∣ =

∣∣EP [ek(θτρ0 )ek(θτρ1 − θτρ0 )
]∣∣ .

In order to break up the expectation on the right hand side into the product of

expectations, we use the following conditional independence. We see that future

increments of θ depend only on the history of θ through the current value of R,

since R is Markovian. That is, for any s < u < v,

θv − θu conditioned on σ(Rs) is independent of F θs .

Now note that, taking s = τρ0 , the σ-algebra σ(Rτρo ) is trivial, and so future incre-
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ments of θ are independent of F θτρ1 , without any conditioning. Hence

EP [ek(θτρ0 )ek(θτρ1 − θτρ0 )
]

= EP [ek(θτρ0 )
]
EP [ek(θτρ1 − θτρ0 )

]
. (3.18)

We will now consider the increment θτρ1 −θτρ0 . We claim that, for small radii ρ0,

the value of this increment approaches a uniform distribution on [0, 2π). We show

this by using a scaling argument, as follows.

Fix α > 0 and rescale time by defining s := αt for t ≥ 0. Then, for t ≥ 0, define

B̃α
s := α

1
2Bt, R̃α

s := α
1
2Rt, θ̃αs := θt,

so that

ds = α dt, and dB̃α
s = α

1
2 dBt.

We can calculate

dR̃α
s = α

1
2

(
λ dBt +

1− λ2

2Rt

dt

)
= α

1
2

(
λα−

1
2 dB̃α

s +
1− λ2

2α−
1
2 R̃α

s

α−1 ds

)

= λ dB̃α
s +

1− λ2

2R̃α
s

ds,

and

dθ̃αs =
√

1− λ2R−1
t dBt − λ

√
1− λ2R−2

t dt

=
√

1− λ2
(
α−

1
2 R̃α

s

)−1

α−
1
2 dB̃α

s − λ
√

1− λ2
(
α−

1
2 R̃α

s

)−2

α−1 ds

=
√

1− λ2
(
R̃α
s

)−1

dB̃α
s − λ

√
1− λ2

(
R̃α
s

)−2

ds.

And so, after rescaling, (R̃α, B̃α) and (θ̃α, B̃α) satisfy the same SDEs (3.13) and

(3.17) as (R,B) and (θ, B).

For i = 0, 1, let τ̃ 0
ρi

be the first hitting time of ρi, by R̃α
s starting from the origin.

Then we have the following equality in distribution:

θτρ1 − θτρ0 = θ̃ατ̃0√
αρ1

− θ̃ατ̃0√
αρ0

= θτ√αρ1 − θτ√αρ0 ,

where the first equality holds pointwise by rescaling, and the second equality holds

in distribution because the rescaled processes satisfy the same SDEs as the original

processes.
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Moreover, recalling our observation that increments of θ between hitting times

of R are independent, we see that the increments

θτρ1 − θτρ0 and θτ√αρ1 − θτ√αρ0

are independent and identically distributed when
√
αρ1 ≤ ρ0.

Now let N ∈ N and set ρ0 = 2−Nρ1. We can write the increment of θ as a sum

of i.i.d. random variables

θτρ1 − θτρ0 =
N−1∑
k=0

(
θτ

2−kρ1
− θτ

2−k+1ρ1

)
,

and so ∣∣EP [ek (θτρ1 − θτρ0)]∣∣ =
∣∣∣EP

[
ek

(
θτρ1 − θτ2−1ρ1

)]∣∣∣N .
By Jensen’s inequality, ∣∣∣EP

[
ek

(
θτρ1 − θτ2−1ρ1

)]∣∣∣2 ≤ 1, (3.19)

with equality if and only if there exists φ ∈ [0, 2π) such that

P
[(
θτρ1 − θτ2−1ρ1

)
∈ {φ+ 2πm, m ∈ Z}

]
= 1.

By Lemma 3.20, no such φ exists, and so the inequality (3.19) is strict. We then

have that

∣∣EP [ek (θτρ1 − θτρ0)]∣∣ =
∣∣∣EP

[
ek

(
θτρ1 − θτ2−1ρ1

)]∣∣∣N N→∞−−−→ 0,

Returning to our calculation of the characteristic function of θt in (3.18), we have∣∣EP [ek(θτρ1 )
]∣∣ =

∣∣EP [ek(θτρ0 )
]
EP [ek(θτρ1 − θτρ0 )

]∣∣
≤
∣∣EP [ek(θτρ1 − θτρ0 )

]∣∣
ρ0↓0−−→ 0.

Hence θτρ1 is uniformly distributed on [0, 2π).

We now show that θτρ1 is independent of H∞, the sigma-algebra generated by

all increments of θ.

Let (ρn)n∈N be a decreasing sequence such that ρn > 0, for all n ∈ N, and
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3.7. Additional SDEs without strong solutions

limn→∞ ρn = 0. For each n ∈ N, define

Hn := σ ({θv − θu : τρn ≤ u ≤ v}) ,

the sigma algebra generated by all increments of θ after the first hitting time of ρn.

Recalling that we are working with filtrations that satisfy the usual conditions,

we have that H∞ =
∨
n∈NHn, since τρn → 0 almost surely as n → ∞. Therefore,

by martingale convergence (see e.g. Theorem 4.3 of [55, Chapter VII]),

EP [ek (θτρ1)Hn
] n→∞−−−→ EP [ek (θτρ1)H∞]

in L1 and almost surely.

We now fix n ∈ N and consider

∣∣EP [ek (θτρ1)Hn
]∣∣ =

∣∣EP [ek (θτρn) ek (θτρ1 − θτρn)Hn
]∣∣ .

By the same conditional independence arguments as we used in the proof of uni-

formity, θτρn is independent of Hn. Since τρ1 ≥ τρn pointwise, θτρ1 − θτρn is Hn-

measurable. Therefore∣∣EP [ek (θτρn) ek (θτρ1 − θτρn)Hn
]∣∣ =

∣∣ek (θτρ1 − θτρn)∣∣ ∣∣EP [ek (θτρn)]∣∣
=
∣∣EP [ek (θτρn)]∣∣

= 0,

by the uniformity of θτρn .

Hence ∣∣EP [ek (θτρ1)Hn
]∣∣ = 0, for all n ∈ N,

and so, by martingale convergence,

EP [ek (θτρ1)H∞] = 0.

Taking Y to be any bounded H∞-measurable random variable, we then have

EP [Y ek (θτρ1)] = EP [Y E
[
ek
(
θτρ1
)
H∞

]]
= 0.

Hence θτρ1 is independent of H∞.

We now apply the independence result in Proposition 3.19 to conclude that the

SDE (3.12) has no strong solution.
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3.7. Additional SDEs without strong solutions

Proof of Theorem 3.15. Suppose thatX is a strong solution of the SDE (3.12). Then

there is an R+-valued FB-adapted process R satisfying the SDE (3.13) with R0 = 0,

and an R/2πZ-valued FB-adapted process θ satisfying the SDE (3.17) such that

Xt = Rt

[
cos θt

sin θt

]
, t > 0.

Fix ρ > 0, and recall the definition

τρ := inf {t > 0: Rt = ρ} .

Then, by Proposition 3.19, θτρ is independent of H∞.

Under our assumption that θ is adapted to FB, this implies that

Hτρ ( F θτρ ⊆ F
B
τρ . (3.20)

However, we claim that B is adapted to H.

To prove this claim, observe that, for any 0 < s < t, the random variable

〈θ〉t − 〈θ〉s =

∫ t

s

R−2
r dr

is Ht-measurable. Since Rr > 0 almost surely for r > 0, as we proved in Proposi-

tion 3.16, Rt is also Ht-measurable.

Now, from the SDE (3.13), we have that

Rt −Rs = λ(Bt −Bs) +

∫ t

s

1− λ2

2Rr

dr,

and so Bt −Bs is FRt -measurable. Since Bs → 0 as s→ 0, we can conclude that

FBt ⊆ FRt ⊆ Ht. (3.21)

Setting t = τρ and combining the two inclusions (3.20) and (3.21), we arrive at the

following contradiction:

FBτρ ⊆ F
R
τρ ⊆ Hτρ ( F θτρ ⊆ F

B
τρ .

Hence there is no strong solution of the SDE (3.12).
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3.8. Discussion of Conjecture 3.5

3.8 Discussion of Conjecture 3.5

Theorem 3.4 shows that, for a one-dimensional Brownian motion B, the SDE

dXt =
1

|Xt|

[
−X2

t

X1
t

]
dBt (3.2)

has no strong solution starting from the origin. Therefore we cannot immediately

adapt the proof of Lemma 2.29 to the case of Markov controls. However, in order

to prove that Conjecture 3.5 holds, we would need to show that, for any other SDE

of the form

dXt = σ(Xt) dBt, (3.22)

there is no strong solution starting from the origin that has the same expected cost.

The key property of the SDE (3.2) is that any solution of this SDE has a deter-

ministically increasing radius, as proved in Lemma 2.4. In Proposition 3.21, we will

derive the form of SDEs (3.22) that have this property and we will show in Corol-

lary 3.22 that any such SDE can replace the SDE (3.2) in the proof of Lemma 2.29.

Proposition 3.21. Let (Ω,F ,P) be a probability space on which an R2-valued Brow-

nian motion is defined with natural filtration FB. Suppose there exists a Borel func-

tion σ : D → U such that the SDE

dXt = σ(Xt) dBt, X0 = 0,

has a strong solution X with t 7→ |Xt| deterministically increasing. Then there exists

a Borel function γ : D → {x ∈ R2 : |x| = 1} such that, for any x = (x1, x2)> ∈ D,

σ(x) =
1

|x|

[
−x2

x1

]
γ(x)>.

Moreover, |Xt| =
√
t, for all t ≥ 0.

Proof. Let t ≥ 0. Since X is a continuous R2-valued FB-adapted martingale, we can

write

Xt = Rt

[
cos θt

sin θt

]
,

for continuous FB-adapted semimartingales R and θ, where R takes values in [0,∞)

and θ takes values in R/2πZ. We call R the radius process of X and θ the angle
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3.8. Discussion of Conjecture 3.5

process. We can then write

dRt = α>t dBt + βt dt,

dθt = ζ>t dBt + ξt dt,

for some FB-adapted R2-valued processes α, ζ and FB-adapted R-valued process β,

ξ.

In order for R to be deterministic, we must have α ≡ (0, 0)>. Then, by Itô’s

formula, we have that

dXt =

[(
βt − 1

2
Rt |ζt|2

)
cos θt −

(
ξtRt + α>t ζt

)
sin θt(

βt − 1
2
Rt |ζt|2

)
sin θt +

(
ξtRt + α>t ζt

)
cos θt

]
dt

+

[
cos θtα

>
t −Rt sin θtζ

>
t

sin θtα
> +Rt cos θtζ

>
t

]
dBt

=

[(
βt − 1

2
Rt |ζt|2

)
cos θt − ξtRt sin θt(

βt − 1
2
Rt |ζt|2

)
sin θt + ξtRt cos θt

]
dt+

[
−Rt sin θtζ

>
t

Rt cos θtζ
>
t

]
dBt.

(3.23)

Since X is a martingale, the drift term must vanish, and so we have the two

equations (
βt −

1

2
Rt |ζt|2

)
cos θt = ξtRt sin θt,(

βt −
1

2
Rt |ζt|2

)
sin θt = −ξtRt cos θt.

Multiplying the first equation by cos θt and the second by sin θt and summing, we

get that

βt −
1

2
Rt |ζt|2 = ξtRt (sin θt cos θt − cos θt sin θt) = 0. (3.24)

Hence

ξtRt sin θt = ξtRt cos θt = 0, for all t ≥ 0,

and so ξ ≡ 0.

We now impose the unit quadratic variation condition. From (3.23), we have

that

σ(Xt) =

[
−Rt sin θtζ

>
t

Rt cos θtζ
>
t

]
.
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And so, since σ ∈ U ,

Tr

[−Rt sin θtζ
>
t

Rt cos θtζ
>
t

][
−Rt sin θtζ

>
t

Rt cos θtζ
>
t

]> = 1.

This can be rewritten as

R2
t |ζt|

2 (sin θ2
t + cos θ2

t

)
= 1.

Therefore

|ζt| =
1

Rt

.

Substituting this back into (3.24), we also have

βt =
1

2Rt

.

We conclude that the radius R solves the deterministic equation

dRt =
1

2Rt

dt,

and so, given the initial condition R0 = 0, we find that

Rt =
√
t.

The angle process θ is a martingale satisfying

dθt = ζ>t dBt,

for some process ζ such that |ζt| = R−1
t .

Rewriting the matrix σ(Xt) in terms of X, we have

σ(Xt) =

[
−X2

t

X1
t

]
ζ>t ,

for some process ζ satisfying |ζt| = |Xt|−1 for all t ≥ 0.

Noting that ζt must be a Borel function of Xt, we normalise ζ and define a Borel

function γ : D → R2 such that

γ(Xt) := |Xt| ζt, t ≥ 0.
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We then have

σ(Xt) =
1

|Xt|

[
−X2

t

X1
t

]
γ(Xt)

>,

with |γ(Xt)| = 1 for all t ≥ 0.

We now verify that a solution of such an SDE can play the role of tangential

motion in Lemma 2.29.

Corollary 3.22. Suppose that X is a strong solution of an SDE of the form given

in Proposition 3.21. Let R > 0 and η ∈ (0, R), and let f̃ : [0, R) be a continuous

function. Then

E0

[∫ τη

0

f̃(|Xs|) ds

]
= 2

∫ η

0

ξf̃(ξ) dξ.

Proof. By Proposition 3.21, |Xt| =
√
t for any t ≥ 0. Therefore

E0

[∫ τη

0

f̃(|Xs|) ds

]
=

∫ η2

0

f̃(
√
s) ds

= 2

∫ η

0

ξf̃(ξ) dξ,

making the change of variables ξ =
√
s in the integral.

If the Markov value function is equal to the strong and weak value functions and

the value is attained by some Markov control, then by Proposition 3.21, taking B

to be an R2-valued Brownian motion, there must be a strong solution of the SDE

dXt =
1

|Xt|

[
−X2

t

X1
t

]
γ(Xt)

> dBt, (3.25)

for some Borel function γ : D → {x ∈ R2 : |x| = 1}, with X0 = 0. A first step

in completing the proof of Conjecture 3.5 would be to show that there is no strong

solution of the SDE (3.25).

We would also need to show that there is no minimising sequence of Markov

controls whose limiting cost is equal to the strong and weak value functions. We

identified one possible minimising sequence in Proposition 3.18, by considering so-

lutions of the SDE

dXt =
1

|Xt|

[
λX1

t −
√

1− λ2X2
t

λX2
t +
√

1− λ2X1
t

]
dBt, (3.12)

starting from the origin, for a one-dimensional Brownian motion B, and taking

the limit as λ ↓ 0. In Theorem 3.15, we showed that, for small parameter values
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λ ∈ (0,
√

2
2

), the SDE (3.12) has no strong solution starting from the origin, thus

ruling out one possible minimising sequence.

However, we could also construct minimising sequences from solutions of the

more general SDE

dXt =
1

|Xt|

[
λX1

t −
√

1− λ2X2
t

λX2
t +
√

1− λ2X1
t

]
γ(Xt)

> dBt,

for an R2-valued Brownian motion B and a Borel function γ : D → {x ∈ R2 : |x| =
1}. We would therefore need to prove that such SDEs also have no strong solution

starting from the origin.

In summary, in this chapter, we have found two SDEs that do not have a strong

solution starting from the origin, as shown in Theorem 3.4 and Theorem 3.15. These

theorems give support to the assertion of Conjecture 3.5 that there is a gap between

the Markov and strong value functions at the origin for costs f̃ that satisfy the

growth condition∫ r

0

f̃(s) ds =∞ and

∫ r

0

sf̃(s) ds <∞, for any r > 0.

We have outlined above the remaining steps that would be required to prove the

conjecture in future work.
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CHAPTER 4

VISCOSITY SOLUTIONS OF

HAMILTON-JACOBI-BELLMAN EQUATIONS

Viscosity solutions of Hamilton-Jacobi-Bellman (HJB) equations are a key tool in

the study of stochastic optimal control problems. In Chapter 2, we solved a control

problem for continuous radially symmetric cost functions by constructing a candi-

date value function and showing that it solves the appropriate Hamilton-Jacobi-

Bellman equation in the viscosity sense. In order to prove that the candidate func-

tion is equal to the value function, we referred to Theorem 4.20, which states that

the value function is the unique viscosity solution of a boundary value problem for

the HJB equation.

In this chapter, we define the notion of viscosity solutions and prove Theo-

rem 4.20. In order to prove the theorem, we first show that the value function is a

viscosity solution of the HJB equation by applying the dynamic programming prin-

ciple from Section 1.4.2. We then prove uniqueness of viscosity solutions by using a

perturbation method to adapt a standard comparison principle, and finally we verify

that the value function satisfies the required boundary condition. We also discuss

a control problem with a discontinuous cost function and the associated viscosity

theory.

4.1 Introduction

A typical approach to solving a stochastic control problem, as described for example

in [26] and [58], is as follows. First conjecture an optimal control and compute the

value attained by following such a control, then verify that this candidate value

is in fact the value function for the control problem. The verification step can be
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4.1. Introduction

made by directly checking that a dynamic programming principle holds, as in the

examples of Section 2.2, or more commonly via a PDE characterisation. Suppose

that Assumption 1.16 holds. As described in Section 1.4.4, we expect the value

function v defined in Section 1.4.1 to solve the boundary value problem−1
2

infσ∈U Tr
(
D2vσσ>

)
= f, in D,

v = g, on ∂D,
(4.1)

as a consequence of the dynamic programming principle (1.5). The PDE in (4.1)

is known as a Hamilton-Jacobi-Bellman (HJB) equation. If we have uniqueness of

solutions of (4.1), then to conclude that the candidate function is equal to the value

function, it is sufficient to show that the candidate solves (4.1). In this context, it

is appropriate to consider solutions of the HJB equation in the viscosity sense.

Viscosity solutions were introduced by Crandall and Lions in [14] to study

Hamilton-Jacobi equations; these are first order equations that arise in determinis-

tic optimal control problems, as described in Chapter I of [26]. Lions developed the

theory of viscosity solutions for second order HJB equations in [43], and viscosity

solutions of more general second order equations are studied by Crandall, Ishii and

Lions in their User’s Guide [13] and by Ishii and Lions in [36]. In both [13] and [36],

a comparison principle is proved for second order PDEs, from which uniqueness

follows. Viscosity solutions of HJB equations and the related comparison principles

are also presented by Fleming and Soner in [26] and by Touzi in [58].

We note that, since the HJB equation in (4.1) has no time dependence and

no direct dependence on the zeroth derivative, the comparison results from the

above references do not apply directly. The User’s Guide [13] suggests methods for

extending the comparison result that is presented there, and we will see that we can

use the perturbation method suggested in Section 5.C of [13] to prove comparison

for the HJB equation in (4.1).

The main result of this chapter is Theorem 4.20, which states that the value

function for the control problem defined in Section 1.4.1 is the unique viscosity

solution of the boundary value problem (4.1). We note that proving Theorem 4.20

will complete the proof of Proposition 2.15, where we referred to this result in order

to characterise the value function of the control problem.

In this chapter, we begin by defining viscosity solutions in Section 4.2. In Sec-

tion 4.3, we prove that the value function is a viscosity solution of the HJB equation.

This result follows from the dynamic programming principle that we established in

Section 1.4.3. We then prove a comparison principle for the HJB equation. We

do this in two stages. In Lemma 4.17, we provide the details of the perturbation
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method suggested in Section 5.C of [13]. Then in Proposition 4.19 we complete the

proof of comparison by choosing a specific perturbation that is suitable for the HJB

equation. Here we use the perturbation that is suggested for proving comparison

for a Monge-Ampère equation in Section V.3 of [36]. To complete the proof of The-

orem 4.20, in Section 4.5 we prove that the value function extends continuously to

the closure of the domain and satisfies the boundary condition v = g pointwise.

We conclude this chapter by discussing viscosity solutions of PDEs with dis-

continuous data in Section 4.7. Extending the definition of viscosity solutions to

allow discontinuous data, as in [11] or [12], our proof of comparison no longer holds.

Therefore, for the control problems with step cost functions in Section 2.2, we cannot

use the theory of viscosity solutions to verify the candidate value function. However,

we will show that the value function does solve an HJB equation in a generalised

viscosity sense.

4.2 Viscosity solutions

We first define viscosity solutions of second order PDEs, following [13] and [26].

Fix d ∈ N and let D ⊂ Rd be a domain. Denote by Sd the set of d×d symmetric

matrices, and let F : D × R × Rd × Sd → R be a differential operator. We are

interested in the PDE

F
(
x, u(x), Du(x), D2u(x)

)
= 0. (4.2)

As stated in the introduction of [13], we require monotonicity conditions on F

in the zeroth and second order derivatives. In the following, we equip the space Sd

of symmetric matrices with the usual partial ordering.

Notation. Let A and B be symmetric matrices of the same dimension. We use the

notation A ≤ B to denote that A − B is a non-positive definite matrix. Similarly,

A < B denotes that A−B is negative definite.

Assumption 4.1. We assume that the following conditions are satisfied.

1. The operator F is continuous in each of its arguments;

2. The operator F is proper ; i.e. for any x ∈ D, p ∈ Rd and X ∈ Sd,

F (x, r, p,X) ≤ F (x, s, p,X) for r ≤ s; (4.3)
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3. The operator F is degenerate elliptic; i.e. for any x ∈ D, r ∈ R and p ∈ Rd,

F (x, r, p,X) ≤ F (x, r, p, Y ) for X ≥ Y. (4.4)

Note that we allow for cases where we may have equality of the operator for

some X > Y . These cases are known as degeneracies and include the case

where F does not depend on the second order derivative.

We now motivate the definition of viscosity solutions, as in Section 2 of [13].

Suppose that there exists a classical solution u of the PDE (4.2) and that φ is a

smooth function that sits above u at some point x0 ∈ D; i.e. φ(x0) = u(x0) and

φ ≥ u in a neighbourhood of x0. Then u − φ has a local maximum at x0, which

implies that Du(x0) = Dφ(x0) and D2u(x0) ≤ D2φ(x0). By ellipticity of F , we have

F
(
x0, u(x0), Dφ(x0), D2φ(x0)

)
≤ F (x0, u(x0), Du(x0), D2u(x0)) = 0. (4.5)

Similarly, for a smooth ψ sitting below u, we have

F
(
x0, u(x0), Dψ(x0), D2ψ(x0)

)
≥ 0, (4.6)

at the local minimum x0 of u− ψ.

We use these two properties to define a weak solution of the PDE (4.2). We

say that a function u is a viscosity solution of (4.2) if any smooth functions sitting

above and below u satisfy the inequalities (4.5) and (4.6), respectively, without

the requirement that u is twice continuously differentiable. A viscosity solution is,

therefore, a generalisation of a classical solution. We give a precise definition of

viscosity solutions following Definition 4.2 of [26, Chapter II].

Definition 4.2 (Viscosity solution I). An upper semicontinuous function u : D → R
is a viscosity subsolution of (4.2) if, for every smooth φ ∈ C∞(D),

F
(
x0, u(x0), Dφ(x0), D2φ(x0)

)
≤ 0,

at any point x0 ∈ D that is a local maximum of u− φ.

Similarly, a lower semicontinuous function u : D → R is a viscosity supersolution

of (4.2) if, for every smooth ψ ∈ C∞(D),

F
(
x0, u(x0), Dψ(x0), D2ψ(x0)

)
≥ 0,

at any point x0 ∈ D that is a local minimum of u− ψ.
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A continuous function u that is both a viscosity subsolution and a viscosity

supersolution of (4.2) is a viscosity solution.

We will find that a second equivalent definition of viscosity solutions will be more

convenient in some cases. This definition is taken from Definition 2.2 of [13] and is

given in terms of semijets, which we now define.

Definition 4.3 (Semijets). Given a set D ⊂ Rd, a function u : D → R and a point

x0 ∈ D, we define J2,+
D u(x0) ⊂ Rd × Sd, the second order superjet of u at x0, as

follows. We say that (p,X) ∈ J2,+
D u(x0) if and only if

u(x) ≤ u(x0) + p>(x− x0) +
1

2
(x− x0)>X(x− x0) + o(

∣∣x− x0
∣∣2), as x→ x0.

We define J2,−
D u(x0), the second order subjet of u at x0, similarly. We say that

(p,X) ∈ J2,−
D u(x0) if and only if

u(x) ≥ u(x0) + p>(x− x0) +
1

2
(x− x0)>X(x− x0) + o(

∣∣x− x0
∣∣2), as x→ x0.

For x ∈ int(D), we define

J2,+u(x) = J2,+
O u(x) and J2,−u(x) = J2,−

O u(x),

where O ⊂ D is any neighbourhood of x.

The following definition is the main definition of a viscosity solution given in [13].

It is also given as an alternative formulation of a viscosity solution in Definition 4.1

of [26, Chapter V].

Definition 4.4 (Viscosity solution II). An upper semicontinuous function u : D →
R is a viscosity subsolution of (4.2) if

F (x, u(x), p,X) ≤ 0 for all x ∈ D, (p,X) ∈ J2,+
D u(x).

A lower semicontinuous function u : D → R is a viscosity supersolution of (4.2) if

F (x, u(x), p,X) ≥ 0 for all x ∈ D, (p,X) ∈ J2,−
D u(x).

A viscosity solution of (4.2) is a continuous function u : D → R that is both a

viscosity subsolution and a viscosity supersolution.

Remark 4.5. For F continuous in each of its arguments, the semijets in the above

definition can equivalently be replaced by their closures, defined as follows.
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Notation. We use the notation J
2,+

D to denote the closure of the set J2,+
D in Rd×Sd;

i.e. (p,X) ∈ J2,+

D if and only if there exists (xn, pn, Xn)n∈N ⊂ D×Rd×Sd such that

(pn, Xn) ∈ J2,+
D for each n ∈ N,

and

(xn, u(xn), pn, Xn)
n→∞−−−→ (x, u(x), p,X).

The closure of the subjet J
2,−
D is defined similarly.

We also introduce the notation

J2
D(x) := J2,+

D (x) ∩ J2,−
D (x),

as in the appendix of [13], and we denote the closure of this set as J
2

D, where this is

defined analogously to the closures of the semijets.

Having presented two definitions of viscosity solutions, it is necessary to check

that they are equivalent. We make use of the following lemma.

Lemma 4.6. Let u : D → R, p ∈ Rd, X ∈ Sd, and x0 ∈ D. Then (p,X) ∈ J2,+
D u(x0)

if and only if there exists φ ∈ C∞(D) such that

x0 ∈ arg max(u− φ) and
(
Dφ(x0), D2φ(x0)

)
= (p,X).

This result can be proved similarly to Lemma 4.1 of [26, Chapter V], which states

the analogous result for parabolic PDEs. We omit the details of the proof here.

Proposition 4.7. Definition 4.2 and Definition 4.4 are equivalent.

Proof. The equivalence of the definitions is an immediate consequence of Lemma 4.6.

4.3 Viscosity solution characterisation of the value

function

The main result of this chapter is Theorem 4.20 below, which states that the value

function for the control problem defined in Section 1.4.1 is the unique solution of

a boundary value problem for the associated Hamilton-Jacobi-Bellman equation.

Throughout this chapter, we suppose that Assumption 1.16 holds. In particular,

the conditions are met for the weak and strong value functions to be equal, as

132



4.3. Viscosity solution characterisation of the value function

shown in Proposition 1.7, and so we refer to this common function as the value

function. It will be convenient to work with the strong formulation in what follows,

defining the value function v : D → R as in (1.4) by

v(x) = inf
σ∈U

Ex
[∫ τ

0

f(Xσ
s ) ds+ g(Xσ

τ )

]
, x ∈ D.

In this section, we prove that the value function is both a viscosity subsolution and

a viscosity supersolution of the HJB equation.

Recall that, under Assumption 1.16, the following dynamic programming prin-

ciple holds, by Proposition 1.17. For any x ∈ D and any stopping time θ such that

θ ∈ [0, τ ] almost surely,

v(x) = inf
σ∈U

Ex
[∫ θ

0

f(Xσ
s ) ds+ v(Xσ

θ )

]
. (1.5)

We showed in Section 1.4.4 that, under sufficient smoothness conditions, the value

function is a classical solution of the Hamilton-Jacobi-Bellman equation

− 1

2
inf
σ∈U

Tr
(
D2vσσ>

)
− f = 0, x ∈ D. (4.7)

We now show that, as a consequence of the dynamic programming principle,

the value function is a viscosity solution of the HJB equation (4.7) under milder

assumptions. We follow the same strategy of proof as in Section 7.1 of [58].

Proposition 4.8. Suppose that Assumption 1.16 holds and that f : D → R is

continuous. Then the value function v is a viscosity subsolution of the HJB equation

(4.7).

Proof. Let x0 ∈ D, fix σ ∈ U and let Xσ be the controlled process following the

constant control σ. Let φ ∈ C∞(D) be such that φ(x0) = v(x0) and φ(x) ≥ v(x) for

all x ∈ N , where N ⊂ D is an open neighbourhood of x0.

For h > 0, define the stopping time

θh := inf {t ≥ 0 : Xσ
t ∈ ∂N} ∧ h.

Since N ⊂ D, we have the pointwise inequality θh < τ and so, by the dynamic

programming principle (1.5), we have

φ(x0) = v(x0) ≤ Ex0
[∫ θh

0

f(Xσ
s ) ds+ v(Xσ

θh
)

]
. (4.8)
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4.3. Viscosity solution characterisation of the value function

Applying Itô’s formula to φ(Xσ
θh

), we see that

φ(x0) = Ex0
[
φ(Xσ

θh
)− 1

2

∫ θh

0

Tr
(
D2φ(Xσ

s )σσ>
)

ds

]
. (4.9)

Subtracting expression (4.8) from (4.9) gives

Ex0
[
φ(Xσ

θh
)− v(Xσ

θh
)
]
≤ Ex0

[∫ θh

0

(
f(Xσ

s ) +
1

2
Tr
(
D2φ(Xσ

s )σσ>
))

ds

]
.

This inequality implies that

Ex0
[∫ θh

0

(
f(Xσ

s ) +
1

2
Tr
(
D2φ(Xσ

s )σσ>
))

ds

]
≥ 0, (4.10)

since φ− v ≥ 0 in N , the process Xσ has continuous paths and, by Corollary 1.13,

v is continuous on N .

Note that θh = h for h sufficiently small, and so, since f is continuous and φ is

twice continuously differentiable, we can apply the mean value theorem to get

lim
h→0

1

h

∫ θh

0

(
f(Xσ

s ) +
1

2
Tr
(
D2φ(Xσ

s )σσ>
))

ds = f(x0) +
1

2
Tr
(
D2φ(x0)σσ>

)
.

The integrand is bounded and the stopping time θh is bounded above by τ , which

has finite expectation by Proposition 1.5. Therefore the integral is bounded above

by an integrable random variable independent of h. Hence we can apply dominated

convergence to take the limit inside the expectation and see that

lim
h→0

1

h
Ex0

[∫ θh

0

(
f(Xσ

s ) +
1

2
Tr
(
D2φ(Xσ

s )σσ>
))

ds

]
= f(x0)+

1

2
Tr
(
D2φ(x0)σσ>

)
.

Combining this with the bound (4.10) gives

− 1

2
Tr
(
D2φ(x0)σσ>

)
≤ f(x0),

and so we have the desired result.

Next we check the supersolution property.

Proposition 4.9. Suppose that Assumption 1.16 holds and that f : D → R is con-

tinuous. Then the value function v is a viscosity supersolution of the HJB equation

(4.7).

Proof. Let x0 ∈ D and let φ ∈ C∞(D) be such that φ(x0) = v(x0) and φ(x) < v(x)
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4.3. Viscosity solution characterisation of the value function

for all x ∈ N ′, where N ′ ⊂ D is some open neighbourhood of x0.

Define H : R× Sd → R by

H(x,X) := −1

2
inf
σ∈U

Tr
(
Xσσ>

)
− f(x),

and suppose for contradiction that

H(x0, D2φ(x0)) < 0.

Since H is continuous, there exists an open neighbourhood N of x0 such that N ⊂
N ′ and

H(x,D2φ(x)) < 0,

for all x ∈ N .

Let ν ∈ U be an arbitrary control and define the stopping time

θν := inf {t ≥ 0 : Xν
t ∈ ∂N} .

Define

η := min
∂N

(v − φ) > 0.

Then

φ(Xν
θν ) ≤ v(Xν

θν )− η, (4.11)

by continuity of the paths of Xν and continuity of v, which was shown in Corol-

lary 1.13.

We now apply Itô’s formula to φ(Xσ
θν ) to see that

v(x0) = φ(x0)

= Ex0
[
φ(Xν

θν )−
1

2

∫ θν

0

Tr
(
D2φ(Xν

s )νsν
>
s

)
ds

]
≤ Ex0

[
φ(Xν

θν ) +

∫ θν

0

(
H(Xν

s , D
2φ(Xν

s )) + f(Xν
s )
)

ds

]
≤ Ex0

[
φ(Xν

θν ) +

∫ θν

0

f(Xν
s ) ds

]
,

using the fact that H ≤ 0 on ∂N , by continuity of H.

Finally, we use the inequality (4.11) to arrive at

v(x0) ≤ Ex0
[
v(Xν

θν ) +

∫ θν

0

f(Xν
s ) ds

]
− η.
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Since η > 0 is independent of the arbitrary control process ν, taking the infimum

over controls in U gives

v(x0) ≤ inf
ν∈U

Ex0
[
v(Xν

θν ) +

∫ θν

0

f(Xν
s ) ds

]
− η.

This contradicts the dynamic programming principle (1.5).

Hence the value function v is a viscosity supersolution of the HJB equation.

Combining the preceding two results, we see that, under Assumption 1.16 and

the additional assumption that the cost function f is continuous, the value function

solves the HJB equation (4.7) in the viscosity sense. We will see in Theorem 4.20

that the value function is in fact the unique viscosity solution of (4.7) that satisfies

the appropriate boundary condition.

In the next section, we prove uniqueness of viscosity solutions of a boundary

value problem for the HJB equation.

4.4 Comparison principle

The usual approach to proving uniqueness of viscosity solutions of a boundary value

problem is to prove a comparison principle for sub- and supersolutions, as in Section

3 of [13], and deduce from this the desired uniqueness result.

Returning to the general form of the PDE (4.2), let D ⊂ R and F : D × R ×
Rd × Sd → R. We wish to prove uniqueness of viscosity solutions of

F (x, u(x), Du(x)D2u(x)) = 0, x ∈ D, (4.2)

that satisfy a given boundary condition. To see that a comparison principle holds

for the PDE (4.2), we make the following standard assumptions, as in Section 3

of [13].

Assumption 4.10. Suppose that the following assumptions hold.

1. The domain D is open and bounded;

2. The operator F is continuous in each of its arguments;

3. The operator F is proper; i.e. F satisfies

F (x, r, p,X) ≤ F (x, s, p,X) for r ≤ s; (4.3)
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4.4. Comparison principle

4. The operator F is coercive in the zeroth order derivative; i.e. there exists

γ > 0 such that

F (x, s, p,X)− F (x, r, p,X) ≥ γ(s− r), for r ≤ s; (4.12)

5. There exists a function ω : [0,∞]→ [0,∞], with ω(0+) = 0, such that

F (y, r, α(x− y), Y )− F (x, r, α(x− y), X) ≤ ω(α |x− y|2 + |x− y|), (4.13)

for any α > 0, whenever X and Y satisfy the matrix inequality

− 3α

[
I 0

0 I

]
≤

[
X 0

0 −Y

]
≤ 3α

[
I −I
−I I

]
. (4.14)

Remark 4.11. Note that (4.14) implies that X ≤ Y . Therefore the fifth statement

of the above assumption is satisfied if (4.13) holds for all X ≤ Y . In particular,

as noted in Example 3.6 of [13], if G : R × Rd × Sd → R is degenerate elliptic, as

defined in (4.4), f : D → R is continuous, and F is of the form

F (x, r, p,X) = G(r, p,X)− f(x),

then the fifth statement of Assumption 4.10 is satisfied.

We now state, but do not prove, the comparison principle that is proved in

Theorem 3.3 of [13]. In Section 4.4.1, we will adapt the proof given in [13] to

generalise this result.

Notation. For a domain D ⊆ Rd, denote the sets of upper and lower semicontinuous

real-valued functions on D by USC(D) and LSC(D), respectively.

Theorem 4.12 (Comparison). Let D ⊂ R and F : D × R × Rd × Sd → R satisfy

Assumption 4.10. Suppose that

u ∈ USC(D) is a viscosity subsolution of (4.2),

v ∈ LSC(D) is a viscosity supersolution of (4.2),

and

u ≤ v on ∂D.

Then

u ≤ v on D.
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4.4. Comparison principle

As a consequence of this comparison principle, we can obtain uniqueness of

viscosity solutions of the Dirichlet problemF (x, u(x), Du(x)D2u(x)) = 0 in D,

u = g on ∂D,
(4.15)

for some g : ∂D → R. We define a solution of (4.15) as follows.

Definition 4.13. We say that u : D → R is a viscosity solution of the Dirichlet

problem (4.15) if u is a viscosity solution of the PDE (4.2) in D, u is continuous on

D, and

u(x0) = g(x0),

for all x0 ∈ ∂D.

In this definition, we impose the boundary condition in a strict pointwise sense,

as in Section 4 of [13]. This allows us to deduce uniqueness for the Dirichlet problem

immediately.

Corollary 4.14 (Uniqueness). Let D ⊂ R and F : D×R×Rd×Sd satisfy Assump-

tion 4.10, and let g : ∂D → R. Suppose that u and v are both viscosity solutions of

the Dirichlet problem (4.15). Then u = v on D.

Proof. Let u and v be viscosity solutions of (4.15). Then, in particular, u is a

viscosity subsolution of the PDE (4.2) and v is a viscosity supersolution of (4.2).

Furthermore, u = v = g on ∂D, so u ≤ v on ∂D. Therefore Theorem 4.12 tells us

that u ≤ v on D.

On the other hand, u is a viscosity supersolution of (4.2) and v is a viscosity

subsolution of (4.2). Again, since u and v both satisfy the boundary condition in

(4.15), v ≤ u on ∂D. Therefore, by Theorem 4.12, v ≤ u on D.

We conclude that u = v on D, and so any viscosity solution of the Dirichlet

problem (4.15) is unique.

As noted in the survey paper [37] of Jensen and Smears, it is possible to prove

comparison principles for viscosity solutions when the notion of boundary conditions

is relaxed. For example, weaker definitions of boundary conditions for viscosity

solutions are given by Barles and Souganidis in [2] and by Crandall, Ishii and Lions in

Definitions 7.1 and 7.4 of the User’s Guide [13]. These definitions allow for viscosity

solutions that do not attain the boundary conditions continuously. However, in this

thesis it will be sufficient to consider viscosity solutions that are continuous on the

closure of the domain D.
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4.4. Comparison principle

Remark 4.15. We make the following remarks on relaxing each statement of As-

sumption 4.10.

1. In Section 5.D of [13], the authors adapt the proof of the comparison principle

to the case of an unbounded domain, under linear growth conditions on the

sub- and supersolutions u and v. Here we will always retain the assumption

that the domain D is bounded.

2. We would like to relax the continuity assumption to allow for the case where

F is of the form

F (x, r, p,X) = G(r, p,X)− f(x),

where G is continuous in each of its arguments, but f may have discontinu-

ities. In Section 4.7, we give a definition of viscosity solutions that allows for

discontinuities of this type, but we have not been able to prove a comparison

principle for these solutions.

3. We will always assume that F is proper.

4. To prove a comparison principle for the HJB equation (4.7), we will need to

relax the coercivity condition (4.12). We can see that the HJB operator F is

not coercive since, taking r, s ∈ R with r < s,

F (x, s, p,X)− F (x, r, p,X)

= −1

2
inf
σ∈U

{
Tr(Xσσ>)

}
− f(x) +

1

2
inf
σ∈U

{
Tr(Xσσ>)

}
+ f(x)

= 0 < γ(s− r),

for any γ > 0. Two methods to relax the coercivity condition (4.12) are

presented in Section 5.C of [13]. In our Lemma 4.17, we verify the details

of one of these methods, and we employ this method to prove a comparison

principle for the HJB equation in Proposition 4.19.

5. We note that the HJB equation (4.7) satisfies the fifth statement of Assump-

tion 4.10 when the function f is continuous. Again, we look to relax this

condition by introducing viscosity solutions for (4.7) with a discontinuity in f

in Section 4.7.

The key ingredient in the proof of the comparison principle for viscosity solutions

is the Crandall-Ishii Lemma, which we now state, referring to Section 6.7 of [58] for

a proof. We will refer to this lemma in the following section in order to prove a

generalisation of the comparison principle to HJB equations.
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Lemma 4.16 (Crandall-Ishii Lemma). Let D ⊂ Rd be open and locally compact,

and let u1, u2 ∈ USC(D). Define w : D2 → R by

w(x1, x2) := u1(x1) + u2(x2), for x1, x2 ∈ D. (4.16)

Suppose that x0 ∈ D2 and ϕ ∈ C2(D2) are such that

(w − ϕ)(x0) = max
D2
{w − ϕ}. (4.17)

Then, for any ε > 0, there exist X1, X2 ∈ Sd such that, for i = 1, 2,

(Dxiϕ(x0), Xi) ∈ J
2,+

D ui(x
0
i ), (4.18)

and

− (ε−1 +
∥∥D2ϕ(x0)

∥∥)I2d ≤

[
X1 0

0 X2

]
≤ D2ϕ(x0) + εD2ϕ(x0)2, (4.19)

where the norm ‖·‖ is defined for symmetric matrices A ∈ S2d by

‖A‖ := sup
{∣∣ξ>Aξ∣∣ : ξ ∈ R2d, |ξ| ≤ 1

}
.

In the following section, we will use the Crandall-Ishii Lemma to show that the

matrix inequality (4.14) in the fifth statement of Assumption 4.10 holds and deduce

the existence of a function ω that satisfies (4.13).

4.4.1 Comparison for an HJB equation

We will now show that a comparison principle holds for the HJB equation (4.7). As

noted in Remark 4.15, the coercivity condition (4.12) is not satisfied, and so we can

not apply the comparison result of Theorem 4.12 directly.

We first show that the perturbation method described in Section 5.C of [13] leads

to the following comparison principle without the coercivity requirement.

Lemma 4.17. Suppose that D ⊂ Rd and F : Rd×R×Rd×Sd → R satisfy statements

1, 2, 3 and 5 of Assumption 4.10.

Let u ∈ USC(D) be a viscosity subsolution and v ∈ LSC(D) a viscosity superso-

lution of (4.2), and suppose that

u ≤ v on ∂D.
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Suppose moreover that, for each k ∈ N, there exists δk > 0 and a function ψk ∈
C∞(D) such that

|ψk| ≤
1

k
,

and uk := u+ ψk is a viscosity subsolution of

F (x, uk, Duk, D
2uk) + δk = 0. (4.20)

Then

u ≤ v on D.

For completeness, we give the following detailed proof, which is omitted when

the result is stated in Section 5.C of [13].

Proof. We first prove that uk ≤ v on ∂D implies that uk ≤ v on D. Then we take

the limit as k →∞ to conclude that u ≤ v on D.

Step 1: Fix k ∈ N. We have that uk is a viscosity subsolution of (4.20) and

therefore also a viscosity subsolution of F (x, uk, Duk, D
2uk) = 0, since, for any test

function φ ∈ C∞(D) and x0 ∈ arg max(uk − φ),

F
(
x0, uk(x

0), Dφ(x0), D2φ(x0)
)
≤ −δk ≤ 0.

We also have that v is a viscosity supersolution of F (x, v,Dv,D2v) = 0. Since uk

is the sum of the upper semicontinuous function u and the smooth function ψk, we

see that uk is upper semicontinuous.

Suppose that uk ≤ v on ∂D. We will now show that we have the strict inequality

uk < v on D. We broadly follow the proof of Theorem 4.12, which is given in detail

as the proof of Theorem 3.3 in [13], but we note that we have not assumed that the

fourth statement of Assumption 4.10 holds.

We apply the Crandall-Ishii Lemma (Lemma 4.16) to the function ϕ : D
2 → R,

defined by

ϕ(x1, x2) =
1

2
x>Ax, x1, x2 ∈ D,

where

x =

[
x1

x2

]
and A = α

[
I −I
−I I

]
,

for some α > 0. We can also write ϕ as

ϕ(x1, x2) =
α

2
|x1 − x2|2 , x1, x2 ∈ D.
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We calculate the first and second order derivatives

Dx1ϕ(x) = α(x1 − x2), Dx2ϕ(x) = α(x2 − x1),

D2ϕ ≡ A, (D2ϕ)2 = A2 = 2αA,

as required in Lemma 4.16. We also calculate that the norm of the Hessian of ϕ is

∥∥D2ϕ
∥∥ = inf{

∣∣ξ>Aξ∣∣ : ξ ∈ R2d, |ξ| ≤ 1} = 2α,

since, for any ξ = (ξ1, ξ2)> ∈ R2d with |ξ| ≤ 1,

ξ>Aξ = α |ξ1 − ξ2|2 ≤ 2α,

with equality when ξ2 = −ξ1 and |ξ1| = 1
2
.

Now, let us suppose for contradiction that there exists z ∈ D such that

uk(z) ≥ v(z). (4.21)

We introduce the following notation. Define mk
α : D2 → R by

mk
α(x1, x2) := uk(x1)− v(x2)− α

2
|x1 − x2|2 ,

and

Mk
α := sup

(x1,x2)∈D2

mk
α(x1, x2).

Note that the maximum is attained due to compactness of D
2

and upper semicon-

tinuity of uk − v, and so there exists xα ∈ D2
such that

Mk
α = uk(x

α
1 )− v(xα2 )− α

2
|xα1 − xα2 |

2 .

Then we see that

Mk
α ≥ mk

α(z, z)

= uk(z)− v(z)− α

2
|z − z|2

= uk(z)− v(z) ≥ 0.

Hence

uk(x
α
1 )− v(xα2 ) ≥ uk(x

α
1 )− v(xα2 )− α

2
|xα1 − xα2 |

2 = Mk
α ≥ 0. (4.22)
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It can be shown that, as α→∞,

α |xα1 − xα2 |
2 → 0 and so also |xα1 − xα2 | → 0.

We refer to Lemma 3.1 and Proposition 3.7 of [13] for a proof of this fact. Combining

the first limit with the inequality (4.22), we see that we can take α sufficiently large

that xα ∈ D2, since uk ≤ v on ∂D.

Now fix ε > 0. Then, taking u1 = uk, u2 = −v to be the two upper semicontinu-

ous functions in the Crandall-Ishii Lemma, we see that, as xα ∈ D2 is a maximiser

of

uk(x1)− v(x2)− α

2
|x1 − x2|2 ,

there exist matrices Xk
1 , X2 ∈ Sd such that

(
α(xα1 − xα2 ), Xk

1

)
∈ J2,+

D uk(x
α
1 ), (−α(xα1 − xα2 ), X2) ∈ J2,+

D (−v)(xα2 ),

and

− (ε−1 + 2α)

[
I 0

0 I

]
≤

[
Xk

1 0

0 X2

]
≤ α(1 + 2αε)

[
I −I
−I I

]
.

The matrix inequality above implies the condition (4.14) in Assumption 4.10, with

X = Xk
1 , Y = −X2, since by choosing ε = α−1, we have

− 3α

[
I 0

0 I

]
≤

[
Xk

1 0

0 X2

]
≤ 3α

[
I −I
−I I

]
.

Therefore, by the fifth statement of Assumption 4.10, there exists a function ω : [0,∞]→
[0,∞], with ω(0+) = 0, such that

F (x2, r, α(x1 − x2),−X2)− F (x1, r, α(x1 − x2), Xk
1 )

≤ ω(α |x1 − x2|2 + |x1 − x2|).
(4.23)

Now, since uk is a viscosity subsolution of (4.20), and
(
α(xα1 − xα2 ), Xk

1

)
∈

J
2,+

D uk(x
α
1 ), we have

F
(
xα1 , uk(x

α
1 ), α(xα1 − xα2 ), Xk

1

)
≤ −δk,

by Definition 4.4. We also note that

(−α(xα1 − xα2 ), X2) ∈ J2,+

D (−v)(xα2 )
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is equivalent to

(α(xα1 − xα2 ),−X2) ∈ J2,−
D v(xα2 ).

Since v is a viscosity supersolution of (4.2), Definition 4.4 gives us

F (xα2 , v(xα2 ), α(xα1 − xα2 ),−X2) ≥ 0.

Combining the above inequalities, we have

F
(
xα1 , uk(x

α
1 ), α(xα1 − xα2 ), Xk

1 )− F (xα2 , v(xα2 ), α(xα1 − xα2 ),−X2

)
≤ −δk. (4.24)

Note that coercivity would usually be used to obtain an inequality of the form (4.24),

as in the proof of Theorem 3.3 of [13], but here the positive constant δk plays the

role of the coercivity constant.

Noting that F is proper, by the third statement of Assumption 4.10, and uk(x
α
1 ) ≥

v(xα2 ) by (4.22), we have that

0 ≤ F
(
xα1 , uk(x

α
1 ), α(xα1 − xα2 ), Xk

1

)
− F

(
xα1 , v(xα2 ), α(xα1 − xα2 ), Xk

1

)
. (4.25)

We can rewrite the right-hand side of (4.25) and apply the inequality (4.24) to get

0 ≤ F
(
xα1 , uk(x

α
1 ), α(xα1 − xα2 ), Xk

1

)
− F (xα2 , v(xα2 ), α(xα1 − xα2 ),−X2)

+ F (xα2 , v(xα2 ), α(xα1 − xα2 ),−X2)− F
(
xα1 , v(xα2 ), α(xα1 − xα2 ), Xk

1

)
≤ F (xα2 , v(xα2 ), α(xα1 − xα2 ),−X2)− F

(
xα1 , v(xα2 ), α(xα1 − xα2 ), Xk

1

)
− δk.

Hence, by (4.23), we have

δk ≤ F (xα2 , v(xα2 ), α(xα1 − xα2 ),−X2)− F
(
xα1 , v(xα2 ), α(xα1 − xα2 ), Xk

1

)
≤ ω

(
α |xα1 − xα2 |

2 + |xα1 − xα2 |
)
.

Since α |xα1 − xα2 |
2 → 0, as α→∞, and ω(0+) = 0, we can take the limit as α→∞

in the above inequality to arrive at

δk ≤ 0.

This is a contradiction, and so there cannot exist any z ∈ D such that (4.21) holds.

Hence

uk < v on D.
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Step 2: We have shown that the implication

uk ≤ v on ∂D ⇒ uk ≤ v on D (4.26)

holds for any viscosity subsolution uk of (4.20) and any viscosity supersolution v of

(4.2). We now show that this is equivalent to

sup
D

(uk − v) = sup
∂D

(uk − v). (4.27)

It is clear that (4.27) implies (4.26). Now suppose that (4.26) holds and let ξ :=

sup∂D(uk − v).

First suppose that ξ > 0. We will show that v + ξ is a viscosity supersolution

of (4.2). Let x0 ∈ D and φ ∈ C∞(D) be such that x0 ∈ arg min(v + ξ − φ). Define

φ̃ = φ− ξ. Then φ̃ ∈ C∞(D) with Dφ = Dφ̃, D2φ = D2φ̃ and x0 ∈ arg min(v − φ̃).

Since v is a viscosity supersolution of (4.2),

F
(
x0, v(x0), Dφ(x0), D2φ(x0)

)
= F

(
x0, v(x0), Dφ̃(x0), D2φ̃(x0)

)
≥ 0,

and since ξ > 0 and F is proper, we get the required supersolution property

F (x0, v(x0) + ξ,Dφ(x0), D2φ(x0)) ≥ F (x0, v(x0), Dφ(x0), D2φ(x0)) ≥ 0.

We have uk ≤ v + ξ on ∂D and so, by (4.26), uk < v + ξ on D.

Suppose now that ξ < 0. Then, similarly, uk − ξ is a viscosity subsolution of

(4.20). We have uk − ξ ≤ v on ∂D and so, by (4.26), uk − ξ < v on D.

Finally, suppose that ξ = 0. Then uk ≤ v on ∂D and so, by (4.26) again, uk < v

on D. We have now shown that supD(uk − v) ≤ ξ. On the other hand, ∂D ⊂ D

implies that

sup
D

(uk − v) ≥ sup
∂D

(uk − v) = ξ,

and so (4.27) holds.

Step 3: The final step in the proof is to take the limit as k → ∞. Let x ∈ D.

Then, combining the results of Step 1 and Step 2, we have

u(x) + ψk(x)− v(x) = uk(x)− v(x) ≤ sup
D

(uk − v)

= sup
∂D

(uk − v) = sup
∂D

(u+ ψk − v).
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4.4. Comparison principle

Recalling that |ψk| ≤ 1
k
, we then have

u(x)− v(x) ≤ sup
∂D

(u− v) + 2
1

k
,

and so, taking the limit as k →∞,

u(x)− v(x) ≤ sup
∂D

(u− v).

Hence supD(u − v) ≤ sup∂D(u − v). Using the fact that ∂D ⊂ D, once again, we

conclude that

sup
D

(u− v) = sup
∂D

(u− v).

Therefore

u ≤ v on ∂D

implies that

u ≤ v on D,

as required.

To prove that a comparison principle holds for the HJB equation (4.7), we now

need to make a suitable choice of the perturbation (ψk)k∈N. We take inspiration

from Section V.3 of [36], where Ishii and Lions use the above perturbation argument

for a Monge-Ampère equation. The perturbation (ψk)k∈N that we will apply to the

HJB equation (4.7) is of the same form as the perturbation suggested in Section V.3

of [36] for the Monge-Ampère equation. For k ∈ N, we define

ψk(x) =
1

k
exp

{
|x|2

2
− C

}
,

for some constant C. In Chapter 5, we will study viscosity solutions for Monge-

Ampère equations and their connection to stochastic control problems. We will

prove a comparison principle for a Monge-Ampère equation in Appendix A.2 using

the same perturbation as defined above.

In the following proof, we make use of the fact that the control set U ⊂ Rd,d is

compact. We now prove this assertion.

Lemma 4.18. Let ‖·‖ be any norm on Rd,d. Then

U :=
{
σ ∈ Rd,d : Tr(σσ>) = 1

}
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4.4. Comparison principle

is a compact set in the normed space (Rd,d, ‖·‖).

Proof. By the Heine-Borel theorem, U is compact if and only if it is a bounded and

closed subset of Rd,d. As all matrix norms are equivalent, it suffices to show that U

is bounded and closed with respect to the Frobenius norm ‖·‖F, defined by

‖σ‖F :=
√

Tr(σσ>), σ ∈ Rd,d.

Any σ ∈ U has norm ‖σ‖F = 1. Hence U is bounded.

Now take a convergent sequence (σn)n∈N ⊂ U with limit σ ∈ Rd,d. We have that

‖σn‖F = 1, for all n ∈ N, and so

0 ≤ |1− ‖σ‖F| = |‖σn‖F − ‖σ‖F| ≤ ‖σn − σ‖F → 0 as n→∞.

Therefore ‖σ‖F = 1, and so Tr(σσ>) = 1 and σ ∈ U .

This shows that U is closed and completes the proof of compactness.

We are now ready to prove the comparison principle for the HJB equation (4.7).

Proposition 4.19. Suppose that Assumption 1.1 holds and that f : D → R is

continuous. Then we have the following comparison principle for the HJB equation

(4.7).

Suppose that

u ∈ USC(D) is a viscosity subsolution of (4.7),

v ∈ LSC(D) is a viscosity supersolution of (4.7),

and

u ≤ v on ∂D.

Then

u ≤ v on D.

Proof. First we check that conditions 1, 2, 3 and 5 of Assumption 4.10 hold.

1. By Assumption 1.1, the domain D is open and bounded.

2. We have assumed that f is continuous. We wish to argue that the operator

F : D × R× Rd × Sd, defined by

F (x, r, p,X) ≡ F (x,X) = −1

2
inf
σ∈U

{
Tr
(
Xσσ>

)}
− f(x),
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4.4. Comparison principle

is continuous in each of its arguments. It remains to show that the map H : Sd → R
defined by

H(X) := −1

2
inf
σ∈U

{
Tr
(
Xσσ>

)}
is continuous.

Define h : Sd × U → R by

h(X, σ) := Tr
(
σσ>X

)
,

so that, for any X ∈ Sd, we can write

H(X) = inf
σ∈U

h(X, σ).

Since both matrix multiplication and the trace operator are continuous, we have

that h : Sd × U → R is continuous. Since U is compact, as proved in Lemma 4.18,

it follows that H : Sd → R is continuous, as the infimum over continuous functions.

Hence F is continuous in each of its arguments, as required.

3. Let r ≤ s, then, for any x ∈ D, p ∈ Rd and X ∈ Sd,

F (x, r, p,X)− F (x, s, p,X) = F (x,X)− F (x,X) = 0,

so F is proper.

5. Define G : Sd → R by G(X) = −1
2

infσ∈U Tr(Xσσ>) for X ∈ Sd. Then the

operator F is of the form

F (x, r, p,X) = G(X)− f(x),

with f continuous. The operator G is degenerate elliptic, since X ≤ Y implies that

Tr(Xσσ>) ≤ Tr(Y σσ>), for any σ ∈ U . Therefore, as we noted in Remark 4.11, the

fifth statement of Assumption 4.10 holds.

We now apply Lemma 4.17 with the following perturbation to the subsolution.

Let m ∈ N and set C = supx∈D
|x|2
2

. Define ψm : D → R by

ψm(x) :=
1

m
exp

{
|x|2

2
− C

}
,

and define um : D → R
um(x) := u(x) + ψm(x),
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4.4. Comparison principle

for x ∈ D. Note that we have |ψm(x)| ≤ 1
m

exp{0} = 1
m

.

To conclude the proof via Lemma 4.17, we need to show that there exists δm > 0

such that um is a viscosity subsolution of

− 1

2
inf
σ∈U

{
Tr
(
D2umσσ

>)}− f + δm = 0.

Fix x0 ∈ D and let φ ∈ C∞(D) be such that x0 ∈ arg max(um−φ). Then, since ψm ∈
C∞(D) and ψm ≥ 0, we have that (φ−ψm) ∈ C∞(D) and x0 ∈ arg max(u−(φ−ψm)).

Since u is a viscosity subsolution of the HJB equation (4.7), this implies that

− 1

2
inf
σ∈U

{
Tr
(
D2(φ− ψm)σσ>

)}
− f ≤ 0,

and so

− 1

2
inf
σ∈U

{
Tr
(
D2(φ)σσ>

)}
− f +

1

2
inf
σ∈U

{
Tr
(
D2(ψm)σσ>

)}
≤ 0. (4.28)

Now we calculate that

D2ψm(x) =
1

m
exp

{
|x|2

2
− C

}(
I + xx>

)
,

so, for any σ ∈ U ,

Tr
(
D2(ψm)σσ>

)
=

1

m
exp

{
|x|2

2
− C

}
Tr
(
[I + xx>]σσ>

)
=

1

m
exp

{
|x|2

2
− C

}[
Tr(σσ>) + Tr(xx>σσ>)

]
.

Since xx>σσ> is positive semi-definite and Tr(σσ>) = 1, this gives us the bound

Tr
(
D2(ψm)σσ>

)
≥ 1

m
exp

{
|x|2

2
− C

}
≥ 1

m
exp {−C} .

Let us define δm := 1
2m

exp {−C}. Then we have that

1

2
inf
σ∈U

{
Tr(D2(ψm)σσ>)

}
≥ 1

2

1

m
exp {−C} = δm,

and so, by (4.28),

− 1

2
inf
σ∈U

{
Tr(D2(φ)σσ>)

}
− f + δm ≤ 0.
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4.5. Boundary condition for the value function

This shows that um satisfies the required subsolution property and so, by Lemma

4.17, we conclude that comparison holds for the HJB equation.

Uniqueness of viscosity solutions of the boundary value problem (4.15) for the

HJB equation (4.7) follows immediately from the comparison principle, as in Corol-

lary 4.14. We now state the main theorem that we will prove in this chapter.

Theorem 4.20. Suppose that Assumption 1.16 holds, and suppose further that the

domain D is uniformly convex, the running cost f is continuous in D, and the

boundary cost g is uniformly continuous on ∂D.

Then the value function v : D → R defined in Section 1.4.1 extends continuously

to D and is the unique viscosity solution of the HJB equation

− 1

2
inf
σ∈U

Tr
(
D2vσσ>

)
− f = 0 (4.7)

in D, with boundary condition

v = g on ∂D.

We have shown that the value function v is a viscosity solution of the HJB

equation (4.7) and that solutions of the boundary value problem for (4.7) are unique.

To complete the proof of Theorem 4.20, it remains to show that the value function

v attains the boundary condition.

4.5 Boundary condition for the value function

In this section, we will show that the value function v attains the value g on the

boundary of the domain. Once again, we draw similarities with the control problem

connected to a Monge-Ampère equation that we will study in Chapter 5. In [28],

Gaveau shows that the value function for that control problem solves a boundary

value problem for a Monge-Ampère equation in some weak sense. We adapt Gaveau’s

proof of attainment of the boundary condition to the case of the control problem

with value function v. We adopt the following notation in this section, so that the

dependence of a controlled process on the control and the initial condition is explicit.

Notation. For σ ∈ U and x ∈ D, denote by Xσ,x a strong solution of the SDE

dXt = σt dBt,
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4.5. Boundary condition for the value function

with initial condition X0 = x, and define the exit time

τσ,x := inf{t ≥ 0: Xσ,x
t ∈ ∂D}.

We will denote by E the expectation with respect to the law of Xσ,x.

We first prove an inequality for the boundary value, under the assumption that

the domain is convex.

Proposition 4.21. Suppose that Assumption 1.1 holds and, moreover, that the

domain D is convex, the function f is bounded on D, and the function g is continuous

on ∂D. Let x ∈ D and x0 ∈ ∂D. Then

lim sup
x→x0

v(x) ≤ g(x0).

Proof. Fix ε > 0, choose δ ∈ (0, 1), and let x ∈ D be such that |x− x0| < δ.

Define the constant control σ1 ∈ U by

σ1
t =

1

|x− x0|

[
x− x0; 0; · · · ; 0

]
, t ≥ 0,

and let W denote the first component of the Brownian motion B. Then

Xσ1,x
t =

Wt

|x− x0|
(x− x0),

for any t ≥ 0, and the controlled process Xσ1,x acts as a Brownian motion on the

line connecting x to the boundary point x0. Note that there also exists z ∈ ∂D,

z 6= x0, such that the line through x and x0 intersects ∂D at z. By convexity of the

domain, the line segment between x0 and z is contained in D.

By definition of the value function,

v(x) ≤ I(x;σ1) := E

[∫ τσ
1,x

0

f
(
Xσ1,x
s

)
ds+ g

(
Xσ1,x

τσ1,x

)]
≤ E

[
τσ

1,x
]
‖f‖∞ + E

[
g
(
Xσ1,x

τσ1,x

)]
.

(4.29)

For the remainder of this proof, we denote Xx = Xσ1,x and τx = τσ
1,x. We bound

the first term of (4.29) as follows.

Let px := P [Xx
τx = x0] and ηx := |x− z|. Then, using well-known properties of
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4.5. Boundary condition for the value function

the hitting times of one-dimensional Brownian motion, we have

E [τx] = pxδ
2 + (1− px)η2

x

< δ2 + (1− px)η2
x.

Since |x− x0| < δ, we also have 1− px ≤ δ
δ+ηx

< δ
ηx

, and so

E[τx] < δ2 + δηx ≤ δ(1 + diam(D)).

Choosing δ < ε (2 ‖f‖∞ [1 + diam(D)])−1, we can bound the first term of (4.29) by

E [τx] ‖f‖∞ <
ε

2
. (4.30)

We bound the second term as follows. Consider

|E [g(Xx
τx)]− g(x0)| = |pxg(x0) + (1− px)g(z)− g(x0)|

= (1− px) |g(z)− g(x0)|

≤ min {2(1− px) ‖g‖∞ , |g(x0)− g(z)|} .

We treat two cases separately, depending on the ratio between the distances δ and

ηx. First, suppose that ηx ≥ δ
1
2 . Then

1− px <
δ

ηx
≤ δ

1
2 .

Choosing δ such that δ
1
2 < ε

4
‖g‖−1

∞ , we have

2(1− px) ‖g‖∞ <
ε

2
.

On the other hand, if ηx < δ
1
2 , then

|x0 − z| ≤ |x0 − x|+ |x− z| < δ + δ
1
2 ≤ 2δ

1
2 .

Since g is continuous on ∂D, we can then choose δ sufficiently small that

|g(x0)− g(z)| < ε

2
.

Combining the two cases, we see that we can always choose δ small enough that

|E [g (Xx
τx)]− g(x0)| < ε

2
,
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4.5. Boundary condition for the value function

which implies that

E [g (Xx
τx)] < g(x0) +

ε

2
. (4.31)

Fixing δ sufficiently small and substituting the bounds (4.30) and (4.31) into

(4.29) gives us

v(x) ≤ E
[∫ τx

0

f (Xx
s ) ds+ g (Xx

τx)

]
<
ε

2
+ g(x0) +

ε

2
= g(x0) + ε.

Thus we have shown that lim supx→x0 v(x) ≤ g(x0).

For attainment of the boundary condition, we require a stronger convexity con-

dition on the domain, which we define analogously to Gaveau’s definition of strictly

pseudoconvex subsets of the complex plane in Section 3 of [28].

Definition 4.22. A set D ⊂ Rd is uniformly convex if there exists p ∈ C2(Rd) such

that

D =
{
x ∈ Rd : p(x) < 0

}
,

Dp 6= 0 on ∂D, and p is uniformly convex; i.e. there exists α > 0 such that the

function x 7→ p(x)− αx2 is convex.

In particular, this definition excludes polygonal domains in dimension d = 2.

We now state our result on the attainment of the boundary condition by the

value function.

Proposition 4.23. Suppose that Assumption 1.16 holds. Moreover, suppose that the

domain D is uniformly convex, the function f is continuous in D, and the function

g is uniformly continuous on ∂D.

Then v extends continuously to D and, for any x0 ∈ ∂D,

lim
x→x0

v(x) = g(x0).

To prove this result, we use the following two lemmas, which are similar to

Lemma 2 and Lemma 4 of [28]. Our first lemma gives a bound on the expected exit

time from the domain.

Lemma 4.24. Suppose that D ⊂ Rd is uniformly convex, with the function p and

constant α as defined in Definition 4.22. For ε > 0, define a domain which contains

D by

Dε :=
{
x ∈ Rd : p(x) < ε

}
.
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4.5. Boundary condition for the value function

Let σ ∈ U and x ∈ Dε, and define the exit time

τσ,xε := inf{t ≥ 0: Xσ,x
t /∈ Dε}.

Then E[τσ,xε ] ≤ 2
α

(ε− p(x)).

Proof. Note that E
[
p
(
Xσ,x
τε

)]
= ε, by continuity of the paths of Xσ,x and continuity

of the function p. Then we can apply Itô’s formula to get

ε = E
[
p
(
Xσ,x
τσ,xε

)]
= p(x) + E

[∫ τσ,xε

0

Dp(Xσ,x
s )>σs dBs

]

+
1

2
E

[∫ τσ,xε

0

Tr(D2p(Xσ,x
s )σsσ

>
s ) ds

]

= p(x) +
1

2
E

[∫ τσ,xε

0

Tr(D2p(Xσ,x
s )σsσ

>
s ) ds

]
,

(4.32)

noting that the integrand in the stochastic integral is bounded and so the integral

has zero expectation.

For any y ∈ Rd, the matrix D2p(y) − αI is positive semi-definite, by uniform

convexity of p. Therefore, for any symmetric positive semi-definite matrix A, we

have the bound

Tr(D2p(y)A) ≥ αTr(A).

Applying this bound to (4.32) gives

ε ≥ p(x) +
α

2
E

[∫ τσ,xε

0

Tr(σsσ
>
s ) ds

]
= p(x) +

α

2
E [τσ,xε ] ,

since σ ∈ U . Therefore

E [τσ,xε ] ≤ 2

α
(ε− p(x)) ,

as required.

Corollary 4.25. Suppose that D ⊂ Rd is uniformly convex. Then

E [τσ,x] ≤ − 2

α
p(x).

Proof. Taking the limit ε ↓ 0 in Lemma 4.24 gives the result.

We now bound the expectation of the value that Xσ,x takes on the boundary of

the domain, in a similar manner to Lemma 4 of [28].
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Lemma 4.26. Let x0 ∈ ∂D and x1 ∈ D be such that |x0 − x1| < 1, and fix σ ∈ U .

Then

E |Xσ,x1
τσ,x1 − x0| ≤ C |x1 − x0|

1
2 ,

for some constant C ≥ 0 independent of x0, x1 and σ.

Proof. By definition of Xσ,x1 , we have that

E |Xσ,x1
τσ,x1 − x0| = E

∣∣∣∣x1 +

∫ τσ,x1

0

σs dBs − x0

∣∣∣∣
≤ |x1 − x0|+ E

∣∣∣∣∫ τσ,x1

0

σs dBs

∣∣∣∣ .
Applying Jensen’s inequality and the Itô isometry, we can bound the above expec-

tation by

E
∣∣∣∣∫ τσ,x1

0

σs dBs

∣∣∣∣ ≤ E

[∣∣∣∣∫ τσ,x1

0

σs dBs

∣∣∣∣2
] 1

2

= E
[∫ τσ,x1

0

Tr(σsσ
>
s ) ds

] 1
2

= E [τσ,x1 ]
1
2 .

(4.33)

Now, using the bound from from Corollary 4.25 and the fact that p = 0 on ∂D,

we have

E [τσ,x1 ] ≤ 2

α
(p(x0)− p(x1)).

Since p ∈ C2(Rd), the function p is also Lipschitz and so, for some Lipschitz constant

L ≥ 0,

E [τσ,x1 ] ≤ 2

α
L |x0 − x1| .

Combining this with (4.33), we have

E
∣∣∣∣∫ τσ,x1

0

σs dBs

∣∣∣∣ ≤ ( 2

α
L

) 1
2

|x0 − x1|
1
2 .

Hence, setting C = 1−
(

2
α
L
) 1

2 ,

E |Xσ,x1
τσ,x1 − x0| ≤ |x1 − x0|+ E

∣∣∣∣∫ τσ,x1

0

σs dBs

∣∣∣∣
≤ C |x0 − x1|

1
2 .

We now use Corollary 4.25 and Lemma 4.26 to prove Proposition 4.23, following
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4.5. Boundary condition for the value function

Gaveau’s proof of Theorem 1 in [28].

Proof of Proposition 4.23. Since we have assumed that Assumption 1.16 holds, we

have that v is locally Lipschitz in D, by Corollary 1.13. By Proposition 4.21, we

also have that

lim sup
x→x0

v(x) ≤ g(x0).

We aim to show that, for x0 ∈ ∂D,

lim inf
x→x0

v(x) ≥ g(x0). (4.34)

For x ∈ D and σ ∈ U define

I(x;σ) := E
[∫ τx,σ

0

f(Xσ,x
t ) dt+ g (Xσ,x

τσ,x)

]
.

We will first show that, for fixed σ ∈ U ,

lim
x→x0

I(x;σ) = g(x0).

We bound the running cost f and the boundary cost g separately.

Let p be a uniformly convex function such that D = {x ∈ Rd : p(x) < 0}, and

let α > 0 be such that the function x 7→ p(x)− α |x|2 is convex. Since f is bounded

in D, we can use the bound from Corollary 4.25 to get∣∣∣∣E [∫ τ

0

f(Xσ,x
s ) ds

]∣∣∣∣ ≤ ‖f‖∞ E[τσ,x]

≤ − 2

α
p(x) ‖f‖∞ .

Then, since p = 0 on ∂D and p is Lipschitz in D with some Lipschitz constant

L > 0, we have that∣∣∣∣E [∫ τ

0

f(Xσ,x
s ) ds

]∣∣∣∣ ≤ 2

α
(p(x0)− p(x)) ‖f‖∞

≤ 2

α
L ‖f‖∞ |x− x0| .

Now, since g is uniformly continuous on ∂D, g has a modulus of continuity ψ,

which we may assume to be concave and increasing, such that

|g(x)− g(y)| ≤ ψ(|x− y|),

for any x, y ∈ ∂D. We can then use Jensen’s inequality on the absolute value, and
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again on the modulus of continuity ψ, to bound the expected value of g on ∂D by

|E [g(Xσ,x
τ )]− g(x0)| ≤ E |g(Xσ,x

τ )− g(x0)| ,

≤ E [ψ(|Xσ,x
τ − x0|)] ,

≤ ψ(E |Xσ,x
τ − x0|).

By Lemma 4.26, we have the bound E |Xσ,x
τ − x0| ≤ C |x− x0|

1
2 , for C = 1−

(
2
α
L
) 1

2 .

Using the assumption that ψ is increasing, we then have

|E [g(Xσ,x
τ )]− g(x0)| ≤ ψ(E |Xσ,x

τ − x0|)

≤ ψ(C |x− x0|
1
2 ).

Combining the bounds on the functions f and g, we have

|I(x;σ)− g(x0)| ≤
∣∣∣∣E [∫ τ

0

f(Xσ,x
s ) ds

]∣∣∣∣+ |E [g(Xσ,x
τ )]− g(x0)|

≤ 2

α
L ‖f‖∞ |x− x0|+ ψ(C |x− x0|

1
2 )

→ 0, as x→ x0.

(4.35)

We now use this limit to prove (4.34).

Fix ε > 0. Then, by definition of the value function, there exists σε ∈ U such

that v(x) > I(x;σε) − ε
2
. Also, by (4.35), there exists δ > 0 such that, for x ∈ D

with |x− x0| < δ,

|I(x;σε)− g(x0)| < ε

2
.

So, for x ∈ D such that |x− x0| < δ, we have

v(x)− g(x0) > I(x;σε)− g(x0)− ε

2

> −ε.

Therefore

lim inf
x→x0

v(x) ≥ g(x0).

Combining this with the result of Proposition 4.21, we can conclude that

g(x0) ≤ lim inf
x→x0

v(x) ≤ lim sup
x→x0

v(x) ≤ g(x0).
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Since v is continuous in D, this implies that v extends continuously to D with

lim
x→x0

v(x) = g(x0), x0 ∈ ∂D.

We now have all of the required tools to prove Theorem 4.20.

4.6 Proof of the main result

Proof of Theorem 4.20. Under Assumption 1.16, the results of Proposition 4.8 and

Proposition 4.9 imply that v is a viscosity solution of the HJB equation (4.7) in D.

Since D is uniformly convex, f is continuous and g is uniformly continuous,

Proposition 4.23 implies that v has a continuous extension to D that satisfies the

boundary condition v = g on ∂D.

Finally, Proposition 4.19 implies uniqueness of solutions of (4.7) with the given

boundary condition, following the same argument as in Corollary 4.14.

Hence the value function is the unique viscosity solution of the HJB equation

(4.7) with boundary condition v = g on ∂D.

4.7 Viscosity solutions of PDEs with discontinu-

ous data

In this section, we consider relaxing the assumption on continuity of F that we

made in Assumption 4.1. Note that, in Example 2.1 and Example 2.6, where the

cost function is a step function, the viscosity theory that we have developed so far

does not apply, owing to the discontinuity in the cost function. Nevertheless, we

were able to find the value function for each of these examples in Proposition 2.5

and Proposition 2.8.

For a cost function f : D → R with a discontinuity, we would like to establish a

characterisation of the value function via the HJB equation

− 1

2
inf
σ∈U

Tr
(
D2vσσ>

)
− f = 0. (4.36)

We say that such a PDE has discontinuous data. The discontinuity in f means that

the definition of viscosity solutions that we gave in Definition 4.2 does not apply to

this equation.

However, viscosity solutions for PDEs with discontinuous data have been treated

in the literature. In [11], Cattiaux, Dai Pra and Rœlly give a definition of viscosity
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solutions for a second order parabolic equation with discontinuous data, in the proof

of their Proposition 2. Coclite and Risebro give a similar definition for first order

equations in Definition 1.1 of [12]. We now adapt the definition given in [11], noting

that we interchange the role of sub- and supersolutions here to be consistent with

our Definition 4.2.

Definition 4.27 (Viscosity solution for a PDE with discontinuous data). Suppose

that G : R × Rd × Sd → R is an elliptic operator that is continuous in each of

its arguments and f : D → R is an upper semicontinuous function. Define F :

D × R× Rd × Sd → R by

F (x, r, p,X) = G(r, p,X)− f(x),

and consider the PDE

F
(
x, u(x), Du(x), D2u(x)

)
= 0. (4.37)

We say that a function u is a viscosity subsolution of (4.37) if, for any smooth

function φ ∈ C∞(D) and any point x0 ∈ arg max(u− φ),

G
(
u(x0), Dφ(x0), D2φ(x0)

)
− f(x0) ≤ 0.

Similarly, we say that a function u is a viscosity supersolution of (4.37) if, for any

smooth function ψ ∈ C∞(D) and any point x0 ∈ arg min(u− ψ),

G
(
u(x0), Dψ(x0), D2ψ(x0)

)
− f?(x0) ≥ 0,

where f? is the lower semicontinuous envelope of f .

We define a viscosity solution of the PDE (4.37) to be a function u that is both

a viscosity subsolution and a viscosity supersolution of (4.37).

Remark 4.28. In our definition of a subsolution, we could replace f with its upper

semicontinuous envelope f ?, since f is assumed to be upper semicontinuous.

Remark 4.29. The above definition coincides with parts (D.3) and (D.6) of Def-

inition 1.1 of [12]. We note that Coclite and Risebro’s definition in [12] has some

additional conditions that we do not enforce here.

We can show that the value function v defined in Section 1.4.1 is a viscosity

solution of the HJB equation (4.36), in the sense that we have just defined, without

assuming continuity of the function f .
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Proposition 4.30. Suppose that Assumption 1.1 holds. Then the value function

v defined in Section 1.4.1 is a viscosity solution of the HJB equation (4.36), in the

sense of Definition 4.27.

The proof of this result is a straightforward adaptation of the proofs of Propo-

sition 4.8 and Proposition 4.9. We do not provide the details here.

We now check directly that the value functions in Example 2.1 and Example 2.6

are viscosity solutions of the appropriate HJB equations in the sense of Defini-

tion 4.27. Let d ≥ 2 and R > 0. Let D = BR(0) ⊂ Rd and fix ρ ∈ (0, R).

Proposition 4.31. Define f : D → R as in Example 2.1 by

f(x) =

0, |x| ≤ ρ,

−1, |x| ∈ (ρ,R).

Then the function v defined in Proposition 2.5 is a viscosity solution of the HJB

equation (4.36) in the sense of Definition 4.27.

Proof. The function v : D → R is given by

v(x) =

ρ2 −R2, |x| ≤ ρ,

|x|2 −R2, |x| ∈ (ρ,R),

and so the Hessian at any point x ∈ D with |x| 6= ρ is

D2v(x) =

0, |x| < ρ,

2I, |x| ∈ (ρ,R).

Suppose that φ ∈ C∞(D) is such that the function v − φ has a local maximum

at some point x0 with |x0| = ρ. Then the Hessian of φ satisfies

D2φ(x0) ≥ 2I,

and so

− 1

2
inf
σ∈U

Tr
(
D2φ(x0)σσ>

)
− f(x0) ≤ −1 < 0.

It is straightforward to check that the same inequality holds at any other point

x ∈ D, since f is continuous there. Therefore v is a viscosity subsolution of the HJB

equation (4.36).

Now suppose that ψ ∈ C∞(D) is such that the function v−ψ has a local minimum
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at some point x0 with |x0| = ρ. Then we must have

D2ψ(x0) ≤ 0,

and so

− 1

2
inf
σ∈U

Tr
(
D2ψ(x0)σσ>

)
− f?(x0) ≥ −f?(x0) = 1 > 0.

On checking that the same inequality holds at all other points in D, we see that v

is a viscosity supersolution. We conclude that v is a viscosity solution of the HJB

equation (4.36), in the sense of Definition 4.27.

We now treat the second example in a similar way.

Proposition 4.32. Define f : D → R as in Example 2.6 by

f(x) =

−1, |x| < ρ,

0, |x| ∈ [ρ,R).

Then the function v defined in Proposition 2.8 is a viscosity solution of the HJB

equation (4.36), in the sense of Definition 4.27.

Proof. The function v : D → R is now given by

v(x) =

|x|
2 + ρ2 − 2ρR, |x| ≤ ρ,

2ρ |x| − 2ρR, |x| ∈ (ρ,R),

and so the Hessian at points x ∈ D with |x| 6= ρ is

D2v(x) =

2I, |x| < ρ,

2ρ |x|−3 [|x|2 I − xx>] , |x| ∈ (ρ,R).

Suppose that φ ∈ C2(D) is such that the function v − φ has a local maximum

at some point x0 with |x0| = ρ. Then the Hessian of φ satisfies

D2φ(x0) ≥ 2I,

and so

− 1

2
inf
σ∈U

Tr
(
D2φ(x0)σσ>

)
− f(x0) ≤ −1 < 0.

Now suppose that ψ ∈ C2(D) is such that the function v−ψ has a local minimum
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at some point x0 with |x0| = ρ. Then the Hessian of ψ satisfies

D2ψ(x0) ≤ 2ρ−2
[
ρ2I − x0(x0)>

]
.

Note that, for any σ ∈ U , we have Tr
([
ρ2I − x0(x0)>

]
σσ>

)
≥ 0 and, choosing

σ? =
1

|x0|

[
x0; 0; · · · ; 0

]
,

we have Tr
([
ρ2I − x0(x0)>

]
σ?(σ?)>

)
= 0. Therefore

inf
σ∈U

Tr
(
D2ψ(x0)σσ>

)
≤ 2ρ−2 inf

σ∈U
Tr
([
ρ2I − x0(x0)>

]
σσ>

)
= 0.

Hence

− 1

2
inf
σ∈U

Tr(D2ψ(x0)σσ>)− f?(x0) ≥ 1 > 0.

Again, it is straightforward to check that the required inequalities hold for all other

points x ∈ D, and so we conclude that v is a viscosity solution of the HJB equation

(4.36), in the sense of Definition 4.27.

We have now shown that, for Example 2.1 and Example 2.6, each candidate

function defined in Proposition 2.5 and Proposition 2.8 is a viscosity solution of

the HJB equation (4.36). By Proposition 4.30, we have that the value function

for each example is also a viscosity solution of (4.36). We have already proved in

Proposition 2.5 and Proposition 2.8 that, for each example, the candidate function

is in fact equal to the value function. However, we are interested in whether we

could prove this result via the HJB equation, as we did for continuous costs in

Proposition 2.15.

Having shown that the value function and the candidate function are viscosity

solutions of the HJB equation (4.36), we would require a uniqueness theory for the

HJB equation in order to conclude directly that these functions are equal, as in

Theorem 4.20. However we are not aware of any uniqueness theory in the literature

that is applicable to the HJB equation (4.37) with discontinuous data.

We note that the usual proof of a comparison principle for viscosity solutions

breaks down when f is allowed to have a discontinuity. In this case, the fifth

statement of Assumption 4.10 may not hold and so we can no longer apply the

Crandall-Ishii Lemma (Lemma 4.16) as we did in Lemma 4.17 to yield a comparison

principle.

In [12], Coclite and Risebro prove a uniqueness result for first order PDEs with

discontinuous data under some additional regularity on the differential operator. In
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future work, it would be of interest to investigate whether we can extend this result

to prove a comparison principle viscosity solutions of the second order HJB equation

(4.36).
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CHAPTER 5

CONTROL PROBLEMS RELATED TO A

MONGE-AMPÈRE EQUATION

In this final chapter, we consider two further stochastic control problems that are

related to the problem defined in Section 1.4.1 that we have studied so far. We will

show that the two problems that we introduce below are equivalent to each other and

that the associated Hamilton-Jacobi-Bellman equation is a Monge-Ampère equation.

5.1 Introduction

Fix d ≥ 2. For a domain D ⊂ Rd and a function f : D → (−∞, 0], consider the

Monge-Ampère equation − detD2u+ (−2f)d = 0,

u convex.
(5.1)

We will define viscosity solutions of this equation over the class of convex functions

in Definition 5.15 and Definition 5.17 below. We will characterise such a solution as

the value function of two equivalent control problems in Theorem 5.24 and Corol-

lary 5.37. The first of these control problems is inspired by the work of Feng and

Jensen in [24], who show the equivalence of the Monge-Ampère equation (5.1) to a

Hamilton-Jacobi-Bellman equation. To our knowledge, the associated control prob-

lem has not been treated in the literature. In Proposition 5.11 we prove a dynamic

programming principle for this control problem. We then use this to show that

the value function is the unique viscosity solution of a Dirichlet problem for the

Monge-Ampère equation (5.1) in Theorem 5.24.
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The second equivalent problem is based on the work of Gaveau in [28]. Gaveau

characterises the value function for this problem as a weak solution of the Monge-

Ampère equation (5.1). Since the paper [28] came before the introduction of viscosity

solutions in the 1983 paper [14], Gaveau uses a different notion of weak solution. In

Corollary 5.37, we show that the value function is once again the unique viscosity

solution of a Dirichlet problem for the Monge-Ampère equation (5.1).

In this chapter, we build on the work cited above to give a complete picture

of the stochastic control problems and their characterisation in terms of viscosity

solutions of the Monge-Ampère equation. As a consequence, we will deduce that

these two control problems are equivalent.

Both of the problems defined here are related to the control problem that we

defined in Section 1.4.1. In the first problem that we introduce in this chapter,

we optimise over the same control set, but add an additional penalisation on the

determinant of the diffusion matrix of the controlled process, favouring those controls

that give a higher determinant. In the second problem, we keep the cost function

the same, but change the control set to replace the constraint on the trace of the

diffusion matrix with a constraint that its determinant is bounded from below. In

the following sections, we will show that the value function defined in Section 1.4.1

is a lower bound for the value functions introduced in this chapter.

As noted above, the control problems introduced in this chapter involve the

determinant of the diffusion matrix. We relate this to the trace by the following

result, which we will refer to several times in this chapter. This well-known result is

a simple consequence of the inequality of arithmetic and geometric means (AM-GM

inequality). It is proved, for example, by Krylov in Lemma 1 of [39, Section 3.2].

Lemma 5.1. For a symmetric positive semi-definite matrix A ∈ Rd,d,

det(A)
1
d ≤ 1

d
Tr(A).

Proof. Recall that the AM-GM inequality states that, for n ∈ N and real numbers

x1, x2, . . . , xn ≥ 0, (
n∏
i=1

xi

) 1
n

≤ 1

n

n∑
i=1

xi.

Since A is positive semi-definite, its eigenvalues λ1, . . . , λd are all non-negative.

We can write the determinant and the trace of the matrix A in terms of the eigen-

values as

det(A) =
d∏
i=1

λi,
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and

Tr(A) =
d∑
i=1

λi.

Then we can conclude by the AM-GM inequality that

det(A)
1
d =

(
d∏
i=1

λi

) 1
d

≤ 1

d

d∑
i=1

λi =
1

d
Tr(A).

Throughout this chapter, the following assumptions will be in force.

Assumption 5.2. Suppose that

1. The domain D is bounded and convex;

2. The cost functions f and g are upper semicontinuous;

3. The running cost f is negative; i.e. f ≤ 0;

4. The boundary cost g is bounded above; i.e. g ≤ K for some K ≥ 0.

Before introducing the control problems, we make some remarks on solutions of

Monge-Ampère equations and their application in optimal transport in Section 5.2.

In Section 5.3, we study the control problem that is associated to the HJB

equation studied by Feng and Jensen in [24]. We show that the weak and strong

value functions for this control problem are equal and bounded below by the value

function v defined in Section 1.4.1. We prove convexity and continuity of the value

function and show that a dynamic programming principle is satisfied. We then prove

that the value function is a viscosity solution of the associated HJB equation with

appropriate boundary condition. Using a comparison principle proved in [24], we

deduce uniqueness of solutions of the Dirichlet problem for this HJB equation.

In Section 5.4, we define viscosity solutions over the set of convex test functions,

as required for our study of the Monge-Ampère equation (5.1). We prove uniqueness

of such solutions of (5.1) with Dirichlet boundary conditions, by using the equiva-

lence with viscosity solutions of an HJB equation proved in [24] and the uniqueness

result from the previous section. We also prove a comparison principle for viscosity

solutions over convex test functions in Appendix A, following the remarks of Ishii

and Lions in Section V.3 of [36]. This comparison principle gives an alternative proof

of uniqueness for the Monge-Ampère equation. We conclude that the value function

from the previous section is the unique solution of a boundary value problem for the

Monge-Ampère equation (5.1).
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In Section 5.5, we consider the control problem studied by Gaveau in [28]. Once

again, we show that weak and strong formulations of the problem are equivalent

and that the value function is bounded below by the value function v defined in

Section 1.4.1. We show that the associated HJB equation is equivalent to the Monge-

Ampère equation (5.1) in the sense of viscosity solutions over convex test functions.

By using the dynamic programming principle and continuity properties that are

proved in [28], we characterise the value function as the unique convex viscosity

solution of the Monge-Ampère equation with appropriate boundary condition. In

Section 5.5.3 we give an alternative proof of attainment of the boundary condition

under weaker convexity conditions on the domain.

Finally, in Section 5.6, we discuss the relationship between the three control

problems that we have studied in this thesis. We see that the two control problems

introduced in this chapter are equivalent, by the characterisation of the value func-

tions in terms of convex viscosity solutions of the Monge-Ampère equation and the

uniqueness of such solutions. For the examples of step cost functions in Section 2.2,

we show that the value functions are in fact equal for all three control problems, by

approximating the optimal strategies identified in Section 2.2. For a continuously

differentiable monotone cost function, however, we show that the value function v

is a strict lower bound for the two value functions defined in this chapter.

5.2 Remarks on Monge-Ampère equations

A Monge-Ampère equation, as defined, for example, in equation (5.15) of [36] and

equation (4.5) of [63], is a second order fully nonlinear PDE of the formdet(D2u(x)) = f(x, u(x), Du(x)), x ∈ D,

u convex, in D,

for some domain D ⊂ Rd and some function f : D × R× Rd → (−∞, 0].

Several notions of weak solution of Monge-Ampère equations have been intro-

duced in the literature, as described in the book [31] of Gutiérrez and in Section 4.1.4

of [63]. For example, the equivalent notions of Aleksandrov solutions and viscosity

solutions of the Monge-Ampère equation are defined in Chapter 1 of [31].

The convexity constraint on the solution of the Monge-Ampère equation is re-

quired in order to ensure that the equation is degenerate elliptic, as defined in the

second statement of Assumption 4.1. This is one of the conditions that we used to

give sense to the definition of viscosity solutions in Definition 4.2.
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Here we restrict ourselves to the Monge-Ampère equation of the form (5.1) for

some f ≤ 0. We now verify that the Monge-Ampère equation is degenerate elliptic

on the set of convex functions.

Lemma 5.3. Problem (5.1) is a degenerate elliptic PDE problem.

To prove this result, we will use the following lemma, which is a consequence of

the Minkowski determinant inequality, as stated in [66].

Lemma 5.4. Fix n ∈ N and let A,B ∈ Rn,n be symmetric positive semi-definite

matrices. Then

det(A+B) ≥ det(A) + det(B).

Proof. Since A and B are symmetric positive semi-definite, their eigenvalues are all

non-negative reals, so det(A), det(B) ≥ 0. We also have that A + B is symmetric

positive semi-definite and det(A+B) ≥ 0.

The Minkowski determinant inequality, as stated in equation (1.1) of [66], states

that

det(A+B)
1
n ≥ det(A)

1
n + det(B)

1
n .

Since all terms in the inequality are non-negative, we can take the nth power to get

det(A+B) ≥
(

det(A)
1
n + det(B)

1
n

)n
≥ det(A) + det(B),

as required.

Proof of Lemma 5.3. Suppose that u is a classical solution of (5.1). Since u is con-

vex, we have that D2u ≥ 0. Now let B ≥ 0. Then

− det(D2u+B) ≤ − det(D2u)− det(B),

by Lemma 5.4. Since B ≥ 0, we know that det(B) ≥ 0. So

− det(D2u+B) ≤ − det(D2u).

Hence, since f does not depend on the Hessian matrix, (5.1) is a degenerate elliptic

problem.

We now have a degenerate elliptic problem, so one of the conditions needed to

use the theory of viscosity solutions is satisfied. However, as noted in [36], our

Definitions 4.2 and 4.4 of viscosity solutions cannot be applied directly to a problem

of the form (5.1). Since the equation here is only elliptic for convex functions, it only
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makes sense to consider convex test functions in Definition 4.2, and positive semi-

definite matrices in the semijets of Definition 4.4. We therefore need to adapt our

definitions to suit the Monge-Ampère equation, in the same manner as in Chapter 1

of [31] and Section V.3 of [36]. In Section 5.4 below, we introduce viscosity solutions

over the class of convex test functions for any PDE that is degenerate elliptic when

restricted to convex solutions.

5.2.1 Monge-Ampère equations in optimal transport

In [10], Brenier showed that the following form of the Monge-Ampère equation arises

in optimal transport:

det(D2u(x)) =
f(x)

g(Du(x))
, (5.2)

where f, g : Rd → R. More precisely, take two measures µ0 and µ1 on Rd that are

both absolutely continuous with respect to Lebesgue measure, and write µ0(dx) =

f(x) dx and µ1(dx) = g(x) dx. Brenier proved that there exists a convex function

u : Rd → R such that Du is the unique optimal map for the optimal transport

problem of finding

min
T :Rd→Rd
T#µ0=µ1

∫
Rd
|x− T (x)|2 µ0(dx),

which is equal to

inf
π∫

Rd π(·,dy)=µ0,∫
Rd π(dx,·)=µ1

∫
Rd
|x− y|2 π(dx, dy).

In the case that µ1 is uniform on D, the Monge-Ampère equation (5.2) becomes

det(D2u(x)) = |D| f(x),

which has the same form as (5.1).

The Brenier solution of the Monge-Ampère problem, which is related to optimal

transport, is described in Section 3.2 of [18] and Section 4.1.4 of [63]. This notion

of solution requires that Du maps the support of µ0 onto the support of µ1, and no

further boundary conditions are imposed. In this chapter, we will instead consider

the Monge-Ampère equation (5.1) with Dirichlet boundary conditions, which are

appropriate for the control problems that we will investigate.

Recall from Section 1.1.1 that we partly motivated our study of the control prob-

lem defined in Section 1.4.1 by discussing martingale optimal transport, a variation

of the classical optimal transport problem. It is notable that the related control
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problems introduced in this chapter are associated to a Monge-Ampère equation,

which plays a role in classical optimal transport. It would be of interest to explore

the connections between these optimal control problems and the two variants of

optimal transport more fully, but we do not pursue that direction further in this

thesis.

5.3 A stochastic control problem inspired by Feng

and Jensen

The first control problem that we introduce in this chapter is inspired by the work

of Feng and Jensen in their paper [24] on numerical methods for Monge-Ampère

equations. In [24], the authors show that the Monge-Ampère equation (5.1) has an

equivalent formulation as the HJB equation

− inf
σ∈U

{
1

2
Tr
(
D2uσσ>

)
+ d f det(σσ>)

1
d

}
= 0, (5.3)

where U := {σ ∈ R,.d : Tr(σσ>)} is unchanged from the definition in Section 1.4.1.

The equivalence for classical solutions can be found in Krylov’s 1987 book [39] as

Lemma 2 of Section 3.2, and this equivalence is described in detail in Chapter 2, §2
of the report [56] of Smears. Feng and Jensen were the first to show in [24] that the

same equivalence holds for viscosity solutions. The reason for introducing the HJB

formulation of the Monge-Ampère equation in [24] is that the convexity constraint in

(5.1) complicates numerical methods, whereas the type of semi-Lagrangian methods

presented in [24] are well-know for HJB equations.

In the context of this thesis, we expect the HJB equation (5.3) to be associated

to the following stochastic control problem, which has not to our knowledge been

studied in the literature. We will prove that the value function for this control

problem has a characterisation in terms of the HJB equation (5.3) in the following

sections. This characterisation leads to a new stochastic representation result for

viscosity solutions of the Monge-Ampère equation (5.1) in Corollary 5.37.

As in Section 1.4.1, we define a strong and a weak control problem, again taking

the definitions from [58] and [20], respectively.

Strong Formulation

The strong formulation of the control problem is to find the strong value function

vSFJ : D → R, defined as follows.
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Let (Ω0,F ,P0) be a probability space on which a d-dimensional Brownian motion

B is defined with natural filtration F = (Ft)t≥0.

Control: Define the set of controls

U := {U -valued F-progressively measurable processes} .

Dynamics: For any x ∈ D and ν = (νt)t≥0 ∈ U , define Xν by the stochastic

integral

Xν
t = x+

∫ t

0

νs dBs, t ≥ 0,

and define the associated exit time from the domain by

τ := inf {t ≥ 0: Xν
t /∈ D} .

Value function: We define the strong value function vSFJ : D → R by

vSFJ(x) := inf
ν∈U

Ex
[
d

∫ τ

0

f(Xν
s ) det(σsσ

>
s )

1
d ds+ g(Xν

τ )

]
.

Remark 5.5. Note that the infimum in the definition of the value function vSFJ is

taken over the same class of controls as in the definition of the value function vS in

(1.4). Here we have an additional term in the cost function that penalises controls

σ that have a small determinant.

For example, consider a control σ ∈ U that can be written as

σt =
[
σt; 0; . . . ; 0

]
, t ≥ 0,

for some σ ∈ Rd. We say that σ is a degenerate control, since det(σt) = 0, for all

t ≥ 0. A process following a degenerate control has zero running cost and therefore

maximises the expected running cost for f ≤ 0. Hence we no longer expect the

degenerate optimal controls found in Chapter 2 for radially symmetric costs to be

optimal here.

Weak Formulation

The weak formulation of the control problem is to find the weak value function

vWFJ : D → R, which we define below, following [20] as in Section 1.4.1.

Define the space of continuous paths Ω := C([0,∞),Rd) and denote the set of

Borel measurable functions ν : R+ → U by B(R+, U). Then set Ω = Ω× B(R+, U)
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and denote an element of Ω by ω = (ω, u). Define the canonical process X = (X, ν)

on Ω by Xt(ω) = ωt, for each t ≥ 0, and ν(ω) = u. For φ ∈ Cb(R+ × U), s ≥ 0,

define

Ms(φ) :=

∫ s

0

φ(r, νr) dr.

Then define the canonical filtration F = (F t)t≥0 by

F t := σ {(Xs,Ms(φ)) : φ ∈ Cb(R+ × U), s ≤ t} , t ≥ 0.

Control: Let M be the set of probability measures on the set Ω× B(R+, U). For

each x ∈ D, let

Mx = {P ∈M : P(X0 = x) = 1} .

Dynamics: Define

Px := {P ∈Mx : t 7→ φ(Xt)− φ(X0)− 1

2

∫ t

0

Tr
(
D2φ(Xs)νsν

>
s

)
ds

is a (F,P)-local martingale for all φ ∈ C2(Rd)},

and let τ = inf {t ≥ 0: Xt /∈ D}.

Value function: We define the weak value function vWFJ : D → R by

vWFJ(x) = inf
P∈Px

EP
[
d

∫ τ

0

f(Xs) det(σsσ
>
s )

1
d ds+ g(Xτ )

]
.

Analogously to Proposition 1.7, we can show that the weak and strong control

problems are equivalent.

Proposition 5.6. Under Assumption 5.2, we have the equality vSFJ = vWFJ in D.

Proof. As in the proof of Proposition 1.7, we refer to Theorem 4.5 of [20]. Fix x ∈ D
and define the function Φ : Ω→ R by

Φ(ω) := d

∫ τ(ω)

0

f(Xs(ω)) det(σsσ
>
s )

1
d ds+ g(Xτ(ω)(ω)), ω ∈ Ω.

By Theorem 4.5 of [20], it is sufficient to show that Φ is upper semicontinuous and

bounded above by some random variable ξ that is uniformly integrable under the

family of probability measures Px.
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For any σ ∈ U , we can apply Lemma 5.1 to the symmetric positive semi-definite

matrix σσ>, to get the bound

d det(σσ>)
1
d ≤ Tr(σσ>) = 1.

Combining this with the bounds f ≤ 0 and g ≤ K from Assumption 5.2, we have

the constant bound

Φ(ω) ≤ K <∞,

and so the uniformly integrability condition is satisfied. Moreover, since f and g are

upper semicontinuous and the determinant is a continuous function, ω 7→ Φ(ω) is

upper semicontinuous.

Hence, by Theorem 4.5 of [20], we conclude that vSFJ(x) = vWFJ(x) for all x ∈
D.

Given this result, we will write the common value as vFJ = vSFJ = vWFJ and refer

to vFJ as the value function.

We now show that the value function vFJ is bounded below by v, the value

function defined in Section 1.4.1.

Proposition 5.7. Suppose that Assumption 5.2 holds. Then v(x) ≤ vFJ(x), for all

x ∈ D.

Proof. Let x ∈ D and σ ∈ U . Then, for all t ≥ 0, Tr(σtσ
>
t ) = 1. By Lemma 5.1, we

can bound the determinant by

det(σtσ
>
t )

1
d ≤ 1

d
Tr(σtσ

>
t ) =

1

d
.

Since f ≤ 0, we then have

Ex
[
d

∫ τ

0

f(Xσ
s ) det(σsσ

>
s )

1
d ds+ g(Xσ

τ )

]
≥ Ex

[∫ τ

0

f(Xσ
s ) ds+ g(Xσ

τ )

]
.

Taking the infimum over σ ∈ U , it follows that

vFJ(x) ≥ v(x),

as required.

We will now prove convexity and continuity of the value function vFJ, and show

that vFJ satisfies a dynamic programming principle. From this dynamic program-

ming principle, it will follow that vFJ is a viscosity solution of the HJB equation

(5.3).
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5.3. A stochastic control problem inspired by Feng and Jensen

5.3.1 Dynamic programming principle

We showed in Lemma 1.11 that the value function v is convex when the cost function

f is negative. We will now prove the same result for vFJ, noting that we do not

actually require negativity of f in the proof.

Lemma 5.8. Suppose that Assumption 5.2 holds and that the domain D is strictly

convex. Then the value function vFJ is convex.

Proof. We follow the same strategy of proof as for the proof of semiconvexity of v

in Lemma 1.11, omitting many of the details here.

Let x0, x1 ∈ D and fix λ ∈ (0, 1). Consider a martingale starting from a point

y := λx0 + (1 − λ)x1 ∈ D, which lies on the line connecting the points x0 and

x1. Define the control σ? ∈ U in the same way as in the proof of Lemma 1.11.

In particular, for t ≤ Hx0,x1 , the first hitting time of either x0 or x1, we have the

constant degenerate control

σ?t =
1

|x1 − x0|

[
x1 − x0; 0; . . . ; 0

]
,

which constrains the controlled process to the line connecting the points x0 and x1.

Therefore det(σ?t (σ
?
t )
>) = 0, for t ≤ Hx0,x1 .

Recall that, from time Hx0,x1 onwards, σ? coincides with one of two ε-optimal

strategies, which we once again denote σ0,ε and σ1,ε, as in the proof of Lemma 1.11.

We then calculate that

vFJ(y) ≤ Ex
[
d

∫ τ

0

f(Xσ?

s ) det(σ?sσ
?
s
>)

1
d ds+ g(Xσ?

τ )

]
= Ex0

[
d

∫ τ

0

f(Xσ0,ε

s ) det(σ0,ε
s σ0,ε

s
>

)
1
d ds+ g(Xσ0,ε

τ )

]
Py[Hx0 < Hx1 ]

+ Ex1
[
d

∫ τ

0

f(Xσ1,ε

s ) det(σ1,ε
s σ1,ε

s
>

)
1
d ds+ g(Xσ1,ε

τ )

]
Py[Hx1 < Hx0 ]

< λvFJ(x0) + (1− λ)vFJ(x1) + 2ε.

Hence

vFJ(y) ≤ λvFJ(x0) + (1− λ)vFJ(x1),

and so vFJ is convex, as required.

To prove continuity of vFJ, we strengthen Assumption 5.2 as follows.

Assumption 5.9. Suppose that Assumption 5.2 holds and, moreover, the domain

D is strictly convex and, for any x ∈ D, vFJ(x) > −∞.
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5.3. A stochastic control problem inspired by Feng and Jensen

As in Corollary 1.13, under the additional conditions of Assumption 5.9, we can

deduce from the convexity result of Lemma 5.8 that the value function vFJ is locally

Lipschitz.

Corollary 5.10. Suppose that Assumption 5.9 holds. Then vFJ is locally Lipschitz

in D.

Proof. Local Lipschitz continuity follows directly from Lemma 5.8 by Theorem 10.4

of [52].

We now prove a dynamic programming principle for the value function vFJ.

Again, the proof follows the same strategy as the proof of Proposition 1.17, and we

omit the details.

Proposition 5.11. Suppose that Assumption 5.9 is satisfied. Then the following

dynamic programming principle holds. For any x ∈ D and for any stopping time θ

such that θ ∈ [0, τ ] almost surely,

vFJ(x) = inf
ν∈U

Ex
[
d

∫ θ

0

f(Xν
s ) det(νsν

>
s )

1
d ds+ vFJ(Xν

θ )

]
.

Proof. First note that, by Lemma 5.1, for any ν ∈ U ,

0 ≤ d det(νtν
>
t )

1
d ≤ Tr(νtν

>
t ) = 1, (5.4)

for all t ≥ 0. We follow the same method of proof as for Proposition 1.17, replacing

the running cost
∫ t

0
f(Xν

s ) ds with

d

∫ t

0

f(Xν
s ) det(νsν

>
s )

1
d ds.

The bound (5.4) ensures that all of the expectations in the proof are still well-defined.

By Corollary 5.10, we have that vFJ is continuous, and so we can make the same

measurable selection argument as in the proof of Proposition 1.17.

As noted in Remark 5.5, any degenerate control has zero determinant. This

simplifies the bound (1.11), as we do not require estimates on the running cost f or

the expectation of the exit time τ .

We can follow the same arguments as in the proof of Proposition 1.17 to complete

the proof.

In the following section, we will use the dynamic programming principle to show

that the value function vFJ satisfies the HJB equation (5.3) in the viscosity sense.
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5.3.2 Viscosity solution characterisation

In this section we will provide a characterisation of the value function as the unique

viscosity solution of the Dirichlet problem− infσ∈U

{
1
2

Tr
(
D2uσσ>

)
+ d f det(σσ>)

1
d

}
= 0, in D,

u = g, on ∂D,
(5.5)

recalling the definition of such a solution given in Definition 4.13.

As a consequence of the dynamic programming principle, we can show that,

when the cost function f is continuous, the value function vFJ is a viscosity solution

of the HJB equation (5.3).

Proposition 5.12. Suppose that Assumption 5.9 holds and that f : D → R is

continuous. Then vFJ is a viscosity solution of the HJB equation (5.3).

The proof of this result proceeds exactly as the proofs of Proposition 4.8 and

Proposition 4.9. Note that the bound on the determinant given by Lemma 5.1

ensures that all expectations in the proof are well-defined and that we can make the

same arguments using Itô’s formula. We do not give the details of the proof here.

We now check that the value function vFJ attains the boundary condition g

on ∂D, again following the same strategy of proof as for the value function v in

Section 4.5. For this result, we require the domain to be uniformly convex, as

defined in Definition 4.22.

Proposition 5.13. Suppose that Assumption 5.9 is satisfied and, moreover, the

domain D is uniformly convex, the running cost f is continuous in D, and the

boundary cost g is uniformly continuous on ∂D.

Then vFJ extends continuously to D with

lim
x→x0

vFJ(x) = g(x0),

for any x0 ∈ ∂D.

Proof. From Corollary 5.10, we have that vFJ is continuous in D. It remains to show

that limx→x0 vFJ = g(x0) for any x0 ∈ ∂D.

To prove this result, we will once again make use of the bound

d det(σσ>)
1
d ≤ 1, (5.4)

for any σ ∈ U , which follows from Lemma 5.1. Following the same method of

proof as in Proposition 4.21, we can show that lim supx→x0 vFJ(x) ≤ g(x0), for any
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x0 ∈ ∂D. The bound (5.4) guarantees that the expectations are well-defined, and

the fact that degenerate controls have zero determinant simplifies the proof.

We now note that the results of Lemma 4.24 and Lemma 4.26 still hold under

the present assumptions. Combining these with the bound (5.4), we can follow the

proof of Proposition 4.23 to find that lim infx→x0 vFJ(x) ≥ g(x0), for any x0 ∈ ∂D.

We conclude that limx→x0 vFJ(x) = g(x0), for any x0 ∈ ∂D.

We have now shown that vFJ is a viscosity solution of the Dirichlet problem (5.5).

In [24], Feng and Jensen prove a comparison principle for the HJB equation (5.3).

This leads to the following characterisation of the value function.

Theorem 5.14. Suppose that Assumption 5.9 holds and, moreover, the domain D

is uniformly convex, the running cost f : D → R is continuous, and the boundary

cost g : ∂D → R is uniformly continuous.

Then vFJ is the unique viscosity solution of the Dirichlet problem (5.5).

Proof. In Lemma 3.6 of [24], the authors prove the following comparison principle

for the HJB equation (5.3). Suppose that u1 : D → R is a viscosity subsolution of

(5.3), u2 : D → R is a viscosity supersolution of (5.3), and that u1 ≤ u2 on ∂D.

Then u1 ≤ u2 on D. As in the proof of Corollary 4.14, we can deduce that any

solution of the Dirichlet problem (5.5) must be unique.

By Proposition 5.12, we have that vFJ is a viscosity solution of the HJB equation

(5.3) in D. By Proposition 5.13, vFJ extends continuously to D and attains the

boundary condition g on ∂D. Hence vFJ is a viscosity solution of the Dirichlet

problem (5.5).

We conclude that vFJ is the unique viscosity solution of (5.5).

By the equivalence of viscosity solutions of the PDEs (5.1) and (5.3) that is

proved in [24], we will deduce that vFJ is the unique viscosity solution of a Dirichlet

problem for the Monge-Ampère equation (5.1). For the Monge-Ampère equation,

we require the notion of convex viscosity solutions that we define in the following

section.

5.4 Convex viscosity solutions

We now define viscosity solutions over the set of convex test functions, following

Section V.3 of [36].
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Let D ⊂ Rd be a bounded convex domain. Consider a continuous differential

operator F : D × R × Rd × Sd → R that is degenerate elliptic on the set of non-

negative definite matrices; i.e.

F (x, r, p,X) ≤ F (x, r, p, Y ), for X, Y ≥ 0, and X ≥ Y. (5.6)

Then we wish to define viscosity solutions of the following problem:
F (x, u(x), Du(x), D2u(x)) = 0 in D,

u is convex in D,

u = g on ∂D.

(5.7)

The following definition is standard in the case of Monge-Ampère equations, as

found in Definition 1.3.1 of [31], Section V.3 of [36], and Section 4.1.4 of [63]. We

take the same definition for any operator F that is degenerate elliptic on the set of

non-negative definite matrices. We first define solutions of the PDEF (x, u(x), Du(x), D2u(x)) = 0 in D,

u is convex in D,
(5.8)

before considering the boundary conditions.

Definition 5.15 (Convex viscosity solution I). We say that an upper semicontinuous

convex function u : D → R is a convex viscosity subsolution of (5.8) if, for every

smooth convex φ ∈ C∞(D),

F
(
x0, u(x0), Dφ(x0), D2φ(x0)

)
≤ 0,

at every point x0 ∈ D that is a local maximum of u− φ.

Similarly, a lower semicontinuous convex function u : D → R is a convex viscosity

supersolution of (5.8) if, for every smooth convex ψ ∈ C∞(D),

F
(
x0, u(x0), Dψ(x0), D2ψ(x0)

)
≥ 0,

at every point x0 ∈ D that is a local minimum of u− ψ.

A continuous convex function u that is both a viscosity subsolution and a vis-

cosity supersolution of (5.8) is a convex viscosity solution.

Remark 5.16. We note that we do not, in fact, alter the definition of viscosity

subsolutions for the convex case. As remarked in Section 1.3 of [31], any test function
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approximating a convex function from above, in the sense of Definition 4.2, must

itself be convex.

The requirement for the test function to be convex in the definition of a super-

solution, however, is a restriction on the class of test functions. This means that we

weaken the standard definition of viscosity solution. We will see in Theorem A.3

and Proposition A.5 of Appendix A that we can still obtain a comparison principle

for convex viscosity solutions.

For convenience in proving the comparison principles in Appendix A, we give a

reformulation of our definition, analogous to Definition 4.4, in terms of the semijets

defined in Definition 4.3.

Definition 5.17 (Convex viscosity solution II). An upper semicontinuous convex

function u : D → R is a convex viscosity subsolution of (5.8) if

F (x, u(x), p,X) ≤ 0 for all x ∈ D, (p,X) ∈ J2,+
D u(x) such that X ≥ 0.

A lower semicontinuous convex function u : D → R is a convex viscosity supersolu-

tion of (5.8) if

F (x, u(x), p,X) ≥ 0 for all x ∈ D, (p,X) ∈ J2,−
D u(x) such that X ≥ 0.

A convex viscosity solution of (5.8) is a continuous convex function u : D → R that

is both a viscosity subsolution and a viscosity supersolution.

Remark 5.18. For F continuous in each of its arguments, the semijets in the

above definition can equivalently be replaced by their closures, as is the case in

Definition 4.4, since the set of non-negative definite matrices is closed.

Remark 5.19. Similarly to the previous definition, we did not need to include the

requirement that X is non-negative definite in the definition of subsolution, as this

is an immediate consequence of (p,X) belonging to the superjet of a convex function

u, for some p ∈ Rd.

Having defined convex viscosity solutions in two different ways, we now need to

verify that the two definitions are equivalent.

Proposition 5.20. Definition 5.15 and Definition 5.17 are equivalent.

Proof. This result follows from a straightforward adaptation of Lemma 4.6.

Suppose that ψ is a convex test function with x0 ∈ arg min(u− ψ). Then

(p,X) :=
(
Dψ(x0), D2ψ(x0)

)
∈ J2,−

D u(x0).
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By convexity of ψ, we have X ≥ 0. Therefore, if a statement is true for every x ∈ D
and (p,X) ∈ J2,−

D u(x) such that X ≥ 0, then it is also true for every smooth convex

ψ such that x0 ∈ arg min(u− ψ).

On the other hand, if (p,X) ∈ J2,−
D u(x0), with X ≥ 0, Lemma 4.6 allows us to

construct a smooth function ψ such that x0 ∈ arg min(u − ψ), Dψ(x0) = p, and

D2ψ(x0) = X. Since X is non-negative definite, ψ is convex at x0. Therefore any

statement that is true for every smooth convex ψ such that x0 ∈ arg min(u− ψ) is

also true for all x ∈ D and (p,X) ∈ J2,−
D u(x).

This gives equivalence of the definitions of convex viscosity supersolutions in

Definition 5.15 and Definition 5.17. By Remark 5.16 and Remark 5.19, the result

for convex viscosity subsolutions follows directly from Lemma 4.6.

Definition 5.21. We say that a convex function u : D → R is a viscosity solution

of the Dirichlet problem (5.7) if u is a convex viscosity solution of (5.8) in D, in

the sense of Definition 5.15 (or equivalently Definition 5.17), and u(x) = g(x) for all

x ∈ ∂D.

5.4.1 A Monge-Ampère equation as an HJB equation

We now have an appropriate definition of a viscosity solution of the Monge-Ampère

equation (5.1). In this section, we will characterise the value function vFJ from

Section 5.3 as the unique convex viscosity solution of a boundary value problem for

this Monge-Ampère equation. We first address the question of uniqueness.

Here we make use of the equivalence between convex viscosity solutions of the

Monge-Ampère equation (5.1) and viscosity solutions of the HJB equation (5.3) that

Feng and Jensen prove in [24]. Using the comparison principle from [24] for the HJB

equation (5.3), as in Theorem 5.14, we deduce uniqueness of solutions of a Dirichlet

problem for the Monge-Ampère equation.

Proposition 5.22. Suppose that Assumption 5.2 holds and f is continuous in D.

Then there is at most one convex viscosity solution of the Monge-Ampère problem
− det(D2u) + (−2f)d = 0, in D,

u convex, in D,

u = g, on ∂D.

(5.9)

Proof. In Theorem 3.3 and Theorem 3.5 of [24], Feng and Jensen show that the

set of viscosity solutions of the Dirichlet problem (5.5) is equal to the set of convex

viscosity solutions of the Dirichlet problem (5.9).

180



5.5. The control problem of Gaveau

Lemma 3.6 of [24] gives a comparison principle for the HJB equation (5.3). This

leads to uniqueness of viscosity solutions of the Dirichlet problem (5.5), as remarked

in Theorem 5.14.

Therefore we have uniqueness of convex viscosity solutions of the Monge-Ampère

problem (5.9).

Remark 5.23. We note that there are other methods of proving uniqueness for the

Monge-Ampère problem (5.9). We consider two of these approaches here.

1. In [31], Gutiérrez proves uniqueness of viscosity solutions of the Dirichlet prob-

lem (5.9) by using an equivalence to Aleksandrov solutions of Monge-Ampère

equations. Gutiérrez proves a comparison principle for Aleksandrov solutions

in Theorem 1.4.6 of [31] and shows that Aleksandrov solutions are equivalent

to convex viscosity solutions in Propositions 1.3.4 and 1.7.1.

2. In [36], Ishii and Lions state a comparison principle for convex viscosity solu-

tions of the Monge-Ampère equation in Theorem V.2, which implies uniqueness

for the Dirichlet problem (5.9). While the main ideas of the proof of this result

are given in Section V.3 of [36], the details are omitted. In Appendix A, we

state and prove a comparison principle for a class of PDEs that are elliptic

on the set of convex functions, following the ideas of [36]. We then supply

the details of the proof for the particular case of the Monge-Ampère equation

(5.1).

Theorem 5.24. Suppose that Assumption 5.9 holds and, moreover, the domain D

is strictly convex, the running cost f is continuous in D, and the boundary cost g

is uniformly continuous on ∂D. Then the value function vFJ is the unique convex

viscosity solution of the Monge-Ampère problem (5.9).

Proof. We showed in Theorem 5.14 that the value function vFJ is the unique viscosity

solution of the problem (5.5). Again we refer to Theorem 3.5 of [24] to see that vFJ

is also a convex viscosity solution of the Dirichlet problem (5.9).

By the uniqueness result of Proposition 5.22, we conclude that vFJ is the unique

convex viscosity solution of the Monge-Ampère problem (5.9).

5.5 The control problem of Gaveau

We now consider a control problem studied by Gaveau in [28], which is also related

to the Monge-Ampère equation (5.1).
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Define the set of matrices

UG :=

{
σ ∈ Rd,d : det(σ) ≥ 1

d

}
,

and let f : D → (−∞, 0] be a continuous function. The HJB equation associated to

the control problem in this section will be−1
2

infσ∈UG
Tr
(
D2uσσ>

)
− f = 0, in D,

u convex in D.
(5.10)

Remark 5.25. Convexity of u is necessary and sufficient for the infimum in (5.10)

to be finite, since D2u is positive semi-definite for any convex function u ∈ C2(D).

We then see that the infimum is non-negative, and so f cannot be strictly positive

when equality holds, thus justifying the conditions imposed on u and f .

In [28], Gaveau shows that (5.10) is equivalent to the Monge-Ampère equation

(5.1) in the sense of classical solutions. In Section V.3 of [36], Ishii and Lions show a

similar equivalence for convex viscosity solutions, with a minor modification to the

definition of the set UG. We now prove the following equivalence.

Lemma 5.26. Let u : D → R be a convex function. Then u is a convex viscosity

solution of the HJB equation

− 1

2
inf
σ∈UG

Tr
(
D2uσσ>

)
− f = 0, in D,

if and only if u is a convex viscosity solution of the Monge-Ampère equation

− det(D2u) + (−2f)d = 0, in D.

This result is a consequence of the following matrix identity.

Lemma 5.27. Let A be a d× d symmetric matrix. Then

inf

{
Tr(AB) : B ∈ Sd, B ≥ 0, detB =

1

dd

}
=

(detA)
1
d if A ≥ 0,

−∞ otherwise.

We note that the above identity is also stated in Section V.3 of [36], and we omit

the proof here.

Proof of Lemma 5.26. In order to prove Lemma 5.26, we make two further obser-

vations. First, for any symmetric positive semi-definite matrix B ∈ Sd, there exists
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a matrix σ ∈ Sd such that B = σσ>. Conversely, the matrix σσ> is symmetric

positive semi-definite for any σ ∈ Rd,d. Hence the infimum over B is equal to the

infimum over σ ∈ UG.

Further, we claim that we can replace the condition det(B) = 1
dd

in Lemma 5.27

with the weaker condition det(B) ≥ 1
dd

. Indeed, suppose that det(B) ≥ 1
dd

. Then,

by Lemma 5.1,

Tr(AB) ≥ d det(AB)
1
d

= d det(A)
1
d det(B)

1
d

≥ det(A)
1
d .

In the case that det(B) = 1
dd

, then the final inequality above becomes an equal-

ity. Therefore the infimum over
{
B : det(B) ≥ 1

dd

}
is at least as large as the in-

fimum over
{
B : det(B) = 1

dd

}
in Lemma 5.27. Moreover, we have the inclusion{

B : det(B) = 1
dd

}
⊆
{
B : det(B) ≥ 1

dd

}
, and so the two infima are actually equal.

Hence we can apply the result of Lemma 5.27 to complete the proof.

We now define a strong and weak formulation of the control problem. For each

N ∈ N, define the set of matrices

UN
G :=

{
σ ∈ Rd,d : det(σ) ≥ 1

d
, σ ≤ NI

}
⊂ UG.

Following Gaveau in [28], we define the strong formulation of the control problem

as follows.

Strong Formulation

The strong formulation of the control problem is to find the strong value function

vSG : D → R, which we now define.

Let (Ω0,F ,P0) be a probability space on which a d-dimensional Brownian motion

B is defined, with natural filtration F = (Ft)t≥0.

Control: For each N ∈ N, define the set of processes

UNG :=
{
UN

G -valued F-progressively measurable processes
}
.

Then we define the set of controls by

UG :=
⋃
N∈N

UNG .
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Dynamics: For any x ∈ D and ν = (νt)t≥0 ∈ UG, define Xν by the stochastic

integral

Xν
t = x+

∫ t

0

νs dBs, t ≥ 0,

and define the exit time of the domain by

τ := inf {t ≥ 0: Xν
t /∈ D} .

Value function: We define the strong value function vSG : D → R by

vSG(x) := inf
ν∈UG

Ex
[∫ τ

0

f(Xν
s ) ds+ g(Xν

τ )

]
.

Remark 5.28. Note that this formulation requires that, for each control σ ∈ UG,

there is some N ∈ N such that σt ≤ NI, for all t ≥ 0. In [28], Gaveau remarks

that this bound is only needed in order to show that the value function solves a

Monge-Ampère equation. It would be of interest to study the problem of optimising

over the set of UG-valued controls, without imposing an upper bound, but we do

not treat that problem here.

We now define a weak formulation of the control problem, using the setup of El

Karoui and Tan in [20].

Weak Formulation

The weak control problem is to find the weak value function vWG : D → R, defined

as follows.

Define the space of continuous paths Ω := C([0,∞),Rd) and denote the set of

Borel measurable functions ν : R+ → U by B(R+, U). Then set Ω = Ω× B(R+, U)

and denote an element of Ω by ω = (ω, u). Define the canonical process X = (X, ν)

on Ω by Xt(ω) = ωt, for each t ≥ 0, and ν(ω) = u. For φ ∈ Cb(R+ × U), s ≥ 0,

define

Ms(φ) :=

∫ s

0

φ(r, νr) dr.

Then define the canonical filtration F = (F t)t≥0 by

F t := σ {(Xs,Ms(φ)) : φ ∈ Cb(R+ × U), s ≤ t} , t ≥ 0.
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5.5. The control problem of Gaveau

Control: For each N ∈ N, let MN
G be the set of probability measures on the set

Ω× B(R+, U
N
G ). For each x ∈ D, let

MN
G,x =

{
P ∈MN

G : P(X0 = x) = 1
}
.

Dynamics: For each N ∈ N, define

PNG,x := {P ∈MN
G,x : t 7→ φ(Xt)− φ(X0)− 1

2

∫ t

0

Tr
(
D2φ(Xs)νsν

>
s

)
ds

is a (F,P)-local martingale for all φ ∈ C2(Rd)}.

Then define

PG,x :=
⋃
N∈N

PNG,x.

Let τ = inf {t ≥ 0: Xt /∈ D}.

Value function: We define the weak value function vWG : D → R by

vWG (x) = inf
P∈PG,x

EP
[∫ τ

0

f(Xs) ds+ g(Xτ )

]
.

To prove that the weak and strong formulations are equivalent, we take a similar

approach to that in Proposition 1.7 and Proposition 5.6, making use of the form of

the control set UG =
⋃
N∈N UNG .

Proposition 5.29. Under Assumption 5.2, we have the equality vSG = vWG in D.

Proof. We first note that vWG ≤ vSG, by definition of the weak and strong value

functions. To see this, fix x ∈ D and define

PSG,x := {P ∈ PG,x : P = PXν × δν· , for some ν ∈ UG},

where PX denotes the law of a process X. Then

vSG(x) = inf
P∈PSG,x

EP
[∫ τ

0

f(Xs) ds+ g(Xτ )

]
≥ vWG (x),

since PSG,x ⊆ PG,x.

We now show that vSG ≤ vWG , by considering the following approximations to the

value functions. For each N ∈ N, define the functions vS,NG , vW,NG : D → R by

vS,NG (x) := inf
ν∈UNG

Ex
[∫ τ

0

f(Xν
s ) ds+ g(Xν

τ )

]
,
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and

vW,NG (x) = inf
P∈PNG,x

EP
[∫ τ

0

f(Xs) ds+ g(Xτ )

]
,

for x ∈ D. We claim that vS,NG = vW,NG , for each N ∈ N, and show that this implies

the result, before proving this claim.

Fix x ∈ D. By definition of the weak value function vWG , there exists a sequence

(Pk)k∈N ⊂ PG,x such that

vWG = lim
k→∞

EPk
[∫ τ

0

f(Xs) ds+ g(Xτ )

]
.

Fix k ∈ N. Then, since PG,x =
⋃
N∈NPNG,x, there exists N(k) ∈ N such that

Pk ∈ PN(k)
G,x .

Therefore, by definition of v
W,N(k)
G , we have

EPk
[∫ τ

0

f(Xs) ds+ g(Xτ )

]
≥ v

W,N(k)
G (x).

Supposing that v
W,N(k)
G = v

S,N(k)
G , we then have

EPk
[∫ τ

0

f(Xs) ds+ g(Xτ )

]
≥ v

S,N(k)
G (x) ≥ vSG(x),

since UN(k)
G ⊂ UG. Taking the limit as k →∞, we get the desired inequality

vWG (x) ≥ vSG(x).

We now fix N ∈ N and verify our claim that vS,NG = vW,NG . We will apply

Theorem 4.5 of [20], as in the proofs of Proposition 1.7 and Proposition 5.6, making

use of the boundedness of the set UN
G .

Define the function Φ : Ω→ R by

Φ(ω) :=

∫ τ(ω)

0

f(Xs(ω)) ds+ g
(
Xτ(ω)(ω)

)
,

and fix x ∈ D. Then, to show that the conditions of Theorem 4.5 of [20] are

satisfied, we need to check that Φ is upper semicontinuous and bounded above by

some random variable that is uniformly integrable under the family of probability

measures PNG,x
Upper semicontinuity of Φ follows from the assumption that f and g are both

upper semicontinuous in Assumption 5.2. By Assumption 5.2, we also have that f
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5.5. The control problem of Gaveau

is negative and g is bounded above by some constant K. Hence

Φ(ω) ≤ K, for all ω ∈ Ω,

and so the uniform integrability condition is satisfied. We now apply Theorem 4.5

of [20] to conclude that vS,NG = vW,NG .

We have therefore shown that vSG = vWG , as required.

Having proved that the weak and strong value functions are equal, we denote the

common value by vG = vSG = vWG and refer to vG as the value function. We will use

the weak formulation in the proof of the next result, but we will find it convenient

to work with the strong value function thereafter.

We now show that the value function vG is bounded below by v.

Proposition 5.30. Suppose that Assumption 5.2 holds. Then v ≤ vG in D.

Proof. We will work with the weak formulations of the control problems in this

proof. Note that, for each control problem, we have equality between the strong

and weak value functions, by Proposition 1.7 and Proposition 5.29, respectively.

Let x ∈ D and suppose that P̃ ∈ PG,x. We will use a time-change argument to

find a measure P ∈ Px under which the expected cost in the control problem is less

than the expected cost under P̃.

Let (X, ν) have joint law P̃. Then, by Proposition 4.6 of [38, Chapter 5] on the

relationship between solutions of local martingale problems and weak solutions of

SDEs, there exists a d-dimensional Brownian motion B such that, for any t ≥ 0,

Xt = x+

∫ t

0

νs dBs.

By definition of PG,x, there exists N ∈ N such that, for each t ≥ 0, νt ∈ UN
G .

Therefore, by Lemma 5.1,

Tr(νtν
>
t ) ≥ d det(νtν

>
t )

1
d ≥ 1. (5.11)

Define A to be the quadratic variation process associated to X. Then, by (5.11),

At = 〈X〉t =

∫ t

0

Tr(νsν
>
s ) ds ≥ t.

Now define X̂ to be the time-changed process

X̂t = XA−1
t
,
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where

A−1
t := inf{u ≥ 0: Au > t}.

Also define A−1
t− := inf{u ≥ 0: Au ≥ t}. Referring to Section 1 of [51, Chapter IV]

on quadratic variations, we show that the time-change t 7→ A−1
t has the following

properties.

1. The processes t 7→ At and t 7→ A−1
t are both continuous and strictly increasing.

To prove this, first note that t 7→ At is continuous and increasing by definition

of quadratic variation of a continuous local martingale (see Theorem 1.8 of [51,

Chapter IV]). Then, by (5.11), we have that

At2 − At1 =

∫ t2

t1

Tr(νsν
>
s ) ds ≥ t2 − t1.

Hence t 7→ At is strictly increasing.

From its definition, we see that t 7→ A−1
t is continuous and strictly increasing

when the same properties hold for t 7→ At.

2. AA−1
t

= t, for any t ≥ 0.

This follows from the fact that A is strictly increasing, as discussed in Section

4 of [51, Chapter 0].

3. A−1 is almost surely finite.

Note that At ≥ t implies that A∞ = ∞. Suppose that A−1
t = ∞. Then

t = A∞ =∞. Hence A−1 is almost surely finite.

4. A and X are constant on the same intervals.

This is a property of quadratic variation that is proved in Proposition 1.13

of [51, Chapter IV].

5. X is A−1-continuous; i.e. X is constant on each interval [A−1
t− , A

−1
t ].

This follows from the fact that A−1
t− = A−1

t for all t ≥ 0, since A is strictly

increasing.

Let F = (Ft)t≥0 be the natural filtration of X, and denote the time-changed fil-

tration by F̂ = (FA−1
t

)t≥0. Since A−1 is almost surely finite and X is A−1-continuous,

we can apply Proposition 1.5 of [51, Chapter 5]. This result implies that the time-

changed process X̂ is an F̂-martingale with quadratic variation given by

〈X̂〉t = 〈X〉A−1
t

= AA−1
t

= t,
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where we use property 2 above to get the final equality.

We now wish to write

X̂t = x+

∫ t

0

ν̃s dWs,

for some F̂-progressively measurable ν̃ and an F̂-Brownian motion W .

Define ν̂t := νA−1
t

and B̂t := BA−1
t

. Then, by Proposition 1.5 of [51, Chapter V],

X̂t = x+

∫ t

0

ν̂s dB̂s.

For any t ≥ 0, define

αt := Tr(ν̂tν̂
>
t )−

1
2 , and Wt :=

∫ t

0

α−1
s dB̂s.

Then, by associativity of the stochastic integral (see Proposition IV.2.4 of [51]), we

have ∫ t

0

αs dWs =

∫ t

0

αsα
−1
s dB̂s = B̂t.

This gives us

X̂t = x+

∫ t

0

ν̂s dB̂s = x+

∫ t

0

αsν̂s dWs

= x+

∫ t

0

Tr(ν̂sν̂
>
s )−

1
2 ν̂s dWs

= x+

∫ t

0

ν̃s dWs,

defining ν̃s := Tr(ν̂sν̂
>
s )−

1
2 ν̂s.

For any s ≥ 0

Tr(ν̃sν̃
>
s ) =

(
Tr(ν̂sν̂

>
s )−

1
2

)2

Tr(ν̂sν̂
>
s ) = 1,

and so ν̃s ∈ U .

We now check that W is a Brownian motion, using Lévy’s characterisation (see

Theorem 3.6 of [51, Chapter IV]). For any i, j,

〈W i,W j〉t =

〈∫ t

0

α−1
s dB̂i

s,

∫ t

0

α−1
s dB̂j

s

〉
t

=

∫ t

0

α−2
s d〈B̂i

s, B̂
j
s〉,

where the second equality follows from Proposition 2.17 of [38, Chapter 3].

Now, by Proposition 1.5 of [51, Chapter V], we know that 〈B̂i〉t = 〈̂Bi〉t, for all i,
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and that 〈B̂i− B̂j〉t = ̂〈Bi −Bj〉t, for all i, j. And so, by expanding the expressions

in the second equality, we can deduce that, for all i, j,

〈B̂i, B̂j〉t = ̂〈Bi, Bj〉t = δ̂ijt = δijA
−1
t .

Note that ∫ t

0

α2
s ds =

∫ t

0

Tr(ν̂sν̂
>
s )−1 ds

=

∫ t

0

Tr
(
νA−1

s
ν>
A−1
s

)−1

ds

=

∫ A−1
t

0

Tr(νuν
>
u )−1 dAu

=

∫ A−1
t

0

Tr(νuν
>
u )−1 Tr(νuν

>
u ) du = A−1

t ,

making the change of variables u = A−1
s in the penultimate line.

So, for any i, j, we have

〈W i,W j〉t =

∫ t

0

α−2
s d〈B̂i, B̂j〉t =

∫ t

0

α−2
s δij dA−1

t =

∫ t

0

α−2
s δijα

2
s ds = δijt.

This shows that W is indeed a standard Brownian motion, by Lévy’s characterisa-

tion.

Now define a probability measure on Ω× B(R+, U) by

P = PX̂ ⊗ δν̃· ,

where PX̂ is the law of X̂. Then P ∈ Px.
Define τ̂ := inf{t ≥ 0: X̂t /∈ D} and consider

EP
[∫ τ̂

0

f(X̂s) ds+ g(X̂τ̂ )

]
.

Note that, since A−1 is strictly increasing and

τ̂ = inf{t ≥ 0: XA−1
t
/∈ D},

we have

A−1
τ̂ = τ. (5.12)
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Now we calculate

EP
[∫ τ̂

0

f(X̂s) ds+ g(X̂τ̂ )

]
= EP

[∫ A−1
τ̂

0

f(X̂At) dAt + g(X̂τ̂ )

]

= EP̃

[∫ A−1
τ̂

0

f(XA−1
At

) Tr(ν̂tν̂
>
t ) dt+ g(XA−1

τ̂
)

]
,

making the substitution s = At in the first line, and then using the definitions of A

and X̂. Using (5.12) and the fact that A−1
At

= t for any t ≥ 0, we then have

EP
[∫ τ̂

0

f(X̂s) ds+ g(X̂τ̂ )

]
= EP̃

[∫ τ

0

f(Xt) Tr(ν̂tν̂
>
t ) dt+ g(Xτ )

]
≤ EP̃

[∫ τ

0

f(Xt) dt+ g(Xτ )

]
,

where the final inequality follows from (5.11) and negativity of f .

We have shown that, for any P̃ ∈ PG,x, we can find a P ∈ Px such that

EP
[∫ τ̂

0

f(X̂s) ds+ g(X̂τ̂ )

]
≤ EP̃

[∫ τ

0

f(Xt) dt+ g(Xτ )

]
.

Hence v(x) ≤ vG(x).

In Example 5.41, we will show that equality holds in the above inequality for the

cost function defined in Example 2.1. However, equality does not hold in general.

We will show in Proposition 5.44 that we have the strict inequality v < vG for a

particular class of cost functions.

5.5.1 Dynamic programming principle

We now refer to the work of Gaveau in [28] to show that the value function vG

satisfies a dynamic programming principle and is continuous and convex. In this

section we will work with the strong formulation of the control problem. We make

the following strengthening of Assumption 5.2.

Assumption 5.31. Suppose that Assumption 5.2 holds and, moreover, the domain

D is uniformly convex, the running cost f is uniformly continuous in D, and the

boundary cost g is continuous on ∂D.

We first show that the value function has a continuous extension on D that

attains the value g on the boundary ∂D, using Theorem 1 of [28].
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Proposition 5.32. Suppose that Assumption 5.31 holds. For each σ ∈ UG, the

function IG(·;σ) : D → R, defined by

IG(x;σ) := Ex
[∫ τ

0

f(Xσ
s ) ds+ g(Xσ

τ )

]
,

is continuous. Moreover, the value function vG has a continuous extension on D

with

lim
x→x0

vG(x) = g(x0),

for any x0 ∈ ∂D.

Proof. First fix σ ∈ UG. Under the given assumptions, Lemmas 2–4 of [28] hold.

We can follow the proof of Theorem 1 of [28] to prove estimates on the function

IG(·, σ) : D → R, similar to statements (2) and (3) of Theorem 1 of [28], where the

constants are independent of the choice of σ. These estimates imply continuity of

IG(·, σ).

Then, following the proof of Theorem 1 of [28], we take the infimum over σ ∈ UG

to conclude that vG is continuous in D and that limx→x0 vG(x) = g(x0), for any

x0 ∈ ∂D.

We now refer to Theorem 3 of [28] for a proof of the dynamic programming

principle.

Proposition 5.33. Suppose that Assumption 5.31 holds. Then we have the follow-

ing dynamic programming principle.

For any x ∈ D, let θ be the exit time of some domain D′ ⊂ D with x ∈ D′.

Then, for any t ≥ 0,

vG(x) = inf
ν∈UG

Ex
[∫ θ∧t

0

f(Xν
s ) ds+ vG(Xν

θ∧t)

]
. (5.13)

Proof. Under the given assumptions, the continuity result of Proposition 5.32 holds,

and so we can apply Lemma 5 of [28]. We note that continuity of vG is used in the

proof of this lemma to make a measurable selection argument, in a similar way as

in our proof of Proposition 1.17.

We can then follow the proof of Theorem 3 of [28] to conclude that the dynamic

programming principle (5.13) holds.

As a corollary to this result, Gaveau shows that, under the same conditions, the

value function is convex in D.
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Corollary 5.34. Suppose that Assumption 5.31 holds. Then the value function vG

is convex in D.

Proof. Under the given assumptions, we have the continuity results of Proposi-

tion 5.32 and the dynamic programming principle of Proposition 5.33. Then Theo-

rem 2 of [28] implies that vG is convex in D.

Remark 5.35. In contrast to the two control problems that we have studied so

far, we have proved the dynamic programming principle for vG and then deduced

convexity as a corollary. In Lemma 1.11 and Lemma 5.8, we were able to show that

the value functions v and vFJ are convex a priori. We went on to deduce continuity

and use this to prove a dynamic programming principle, under weaker conditions.

We conjecture that these proofs can be adapted to show that the value function vG

is convex a priori without the strict conditions of Assumption 5.31.

Having established a dynamic programming principle, we will use this to show

that the value function is the unique convex viscosity solution of the associated HJB

equation with appropriate boundary condition.

5.5.2 Viscosity solution characterisation

We now show that the value function vG solves the HJB equation (5.10) in D with

boundary condition vG = g on ∂D. We will also deduce uniqueness for this boundary

value problem, by combining the uniqueness result for the Monge-Ampère equation

given in Proposition 5.22 with the equivalence result proved in Lemma 5.26.

Theorem 5.36. Suppose that Assumption 5.31 holds. Then vG is the unique convex

viscosity solution of the Dirichlet problem
−1

2
infσ∈UG

Tr(D2uσσ>)− f = 0, in D,

u convex in D,

u = g, on ∂D.

(5.14)

Proof. Under the given assumptions, a dynamic programming principle holds for vG,

by Proposition 5.33. Using the fact that, for any σ ∈ UG, there exists N ∈ N such

that σ ≤ NI, we can follow the same arguments as in the proofs of Proposition 4.8

and Proposition 4.9, to deduce that vG is a convex viscosity solution of the HJB

equation (5.10) in D.

From Proposition 5.32, we also have that

lim
x→x0

vG(x) = g(x0),
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for any x0 ∈ ∂D. Hence vG is a convex viscosity solution of the problem (5.14)

Uniqueness will follow by equivalence of the HJB equation to a Monge-Ampère

equation. By Lemma 5.26, any convex viscosity solution of the HJB equation (5.10)

is also a convex viscosity solution of the Monge-Ampère equation (5.1). Convex

viscosity solutions of the Monge-Ampère equation with a given Dirichlet boundary

condition are unique by Proposition 5.22. Therefore there is at most one convex

viscosity solution of the Dirichlet problem (5.14).

Hence vG is the unique convex viscosity solution of (5.14).

Corollary 5.37. Suppose that Assumption 5.31 holds. Then vG is the unique convex

viscosity solution of the Monge-Ampère problem (5.9).

Proof. From Theorem 5.36, we have that vG is a convex viscosity solution of the

Dirichlet problem (5.14). Then, by Lemma 5.26, vG is also a convex viscosity solution

of the Monge-Ampère problem (5.9). We have uniqueness by Proposition 5.22.

5.5.3 Alternative proof of attainment of the boundary con-

dition

Part of the statement of Proposition 5.32 is that the value function vG attains the

boundary value g on ∂D. We proved this by following the work of Gaveau in [28].

In the following lemma, we prove the attainment of the boundary condition under

slightly weaker conditions.

Lemma 5.38. Suppose that Assumption 5.2 holds and that f : D → R is bounded

and g : ∂D → R is continuous. Let x0 ∈ ∂D. Then

lim
x→x0

vG(x) = g(x0).

Proof. Fix σ ∈ UG and recall the definition of IG(·;σ) : D → R from Proposi-

tion 5.32. We first show that

lim
x→x0

IG(x;σ) = g(x0).

For any t > 0, we have both σtσ
>
t ≥ 0 and det(σtσ

>
t ) > 0. Hence σtσ

>
t > 0.

Also, since D is a convex domain, it satisfies an exterior sphere condition. We can

then check that all of the conditions are satisfied in order to apply Theorem 3.3

of [50, Chapter 2]. The first result of this theorem is that

lim
x→x0

Px [τ > t] = 0, for all t > 0.
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This result is proved by showing that

lim
x→x0

Ex [τ ] = 0, (5.15)

and then applying Chebyshev’s inequality. Combining (5.15) with the fact that f is

bounded, we see that

lim
x→x0

∣∣∣∣Ex [∫ τ

0

f(Xσ
s ) ds

]∣∣∣∣ ≤ ‖f‖∞ lim
x→x0

Ex [τ ] = 0. (5.16)

We now use the second result of Theorem 3.3 of [50, Chapter 2], which gives us

that, for any t > 0,

lim
x→x0

Ex [g(Xσ
t∧τ )] = g(x0). (5.17)

Letting t→∞, we conclude from (5.16) and (5.17) that

lim
x→x0

IG(x;σ) = lim
x→x0

Ex
[∫ τ

0

f(Xσ
s ) ds+ g(Xσ

τ )

]
= g(x0). (5.18)

We now consider the infimum, vSG(x) = infσ∈UG IG(x;σ), for x ∈ D.

Let δ > 0 and fix x ∈ Bδ(x0) ∩ D. By definition of the infimum, there exists

σε ∈ UG such that

vG(x) > IG(x;σε)− ε

2
.

By (5.18), we can choose δ such that

|IG(x;σε)− g(x0)| < ε

2
. (5.19)

Therefore IG(x;σε) > g(x0)− ε
2
, and so

vG(x) > g(x0)− ε.

We also have that vG(x) ≤ IG(x;σε), by definition of the infimum. Using (5.19)

again, we get IG(x;σε) < g(x0) + ε
2
, and so

vG(x) ≤ g(x0) +
ε

2
< g(x0) + ε.

We conclude that

|vG(x)− g(x0)| < ε.

Hence

lim
x→x0

vG(x) = g(x0),
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as required.

Remark 5.39. A key point in the above proof is that, for any σ ∈ UG, the matrix

σσ> is positive definite. This allows us to apply the result from [50] for any convex

domain. To prove a similar result for the value function v in Section 4.3, we could

not apply the same result from [50], since σσ> may be degenerate for σ ∈ U . In

dimension d = 2, if the boundary of a domain has a straight edge, then this allows

for controlled processes which are constrained to move on a line parallel to that

edge. Therefore we do not expect the boundary condition to be attained. In order

to prove attainment of the boundary condition in Proposition 4.23, we needed to

restrict ourselves to domains satisfying the same uniform convexity condition that

Gaveau imposes in [28].

5.6 Relationship between value functions

In this section, we obtain an ordering of the value functions for all of the control

problems that we have considered in this thesis.

Theorem 5.40. Suppose that each assumption holds from Assumption 1.1, Assump-

tion 5.9 and Assumption 5.31, and suppose that the boundary cost g is uniformly

continuous on ∂D.

Then we have the following ordering between the value functions:

vS = vW ≤ vWG = vSG = vSFJ = vWFJ.

Proof. We prove each of the relations in turn.

1. The equality vS = vW is the result of Proposition 1.7, which holds under

Assumption 1.1.

2. We proved that vW ≤ vWG in Proposition 5.30, under weaker conditions than

Assumption 5.9.

3. The equality vWG = vSG is the result of Proposition 5.29, which holds under

Assumption 5.9.

4. Under Assumption 5.31, Corollary 5.37 implies that vSG is the unique convex

viscosity solution of the Monge-Ampère problem (5.9). Combining Assump-

tion 5.9 and Assumption 5.31 with the assumption that g is uniformly con-

tinuous on ∂D, we have the required conditions for Theorem 5.24 to hold.
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Hence vSFJ is the unique convex viscosity solution of the same problem (5.9).

By uniqueness of solutions of (5.9), we obtain vSG = vSFJ.

5. The final equality vSFJ = vWFJ is the result of Proposition 5.6, which holds under

Assumption 5.9.

We now show by means of examples that, while all of the value functions may

coincide for some cost functions, this is not always the case.

We first revisit Example 2.1 and show that, for the step cost function in this

example, all of the value functions in Theorem 5.40 are equal.

Example 5.41. Fix R > 0 and let D = BR(0) ⊂ Rd. Let ρ ∈ (0, R) and define

f : D → R by

f(x) =

0, |x| ≤ ρ,

−1, |x| ∈ (ρ,R).

We seek the value functions vFJ, vG : D → R, given by

vFJ(x) = inf
σ∈U

Ex
[
d

∫ τ

0

f(Xσ
s ) det(σsσ

>
s )

1
d ds

]
= inf

σ∈U
Ex
[
d

∫ τ

0

−1{|Xσ
s |∈(ρ,R)} det(σsσ

>
s )

1
d ds

]
,

and

vG(x) = inf
σ∈UG

Ex
[∫ τ

0

−1{|Xσ
s |∈(ρ,R)} ds

]
.

In this example, the cost function f has a discontinuity, and so we do not have a

PDE characterisation for either of the value functions. Therefore, we do not know a

priori that vFJ = vG. We will find each value function in turn and deduce that they

are in fact both equal to the value function v. Note that Assumption 5.2 is satisfied,

and so, for each control problem, the weak and strong formulations are equivalent.

Proposition 5.42. In Example 5.41, the value function vFJ is given by

vFJ(x) =

ρ2 −R2, |x| ≤ ρ,

|x|2 −R2, |x| ∈ (ρ,R).

Proof. Define w : (0, R2)→ R by

w(ξ) :=

ρ2 −R2, ξ ≤ ρ2,

|x|2 −R2, ξ ∈ (ρ2, R2),
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as in Proposition 2.5. Also let Zσ
t = |Xσ

t |
2 for any σ ∈ U and t ≥ 0, and recall from

(2.2) that Zσ satisfies

dZσ
t = 2X>t σt dBt + dt.

Then, similarly to (2.4), we can apply the Itô-Tanaka formula to get

w(Zσ
t )− w(ξ) + d

∫ t

0

f(Xσ
s ) det(σsσ

>
s )

1
d ds = 2

∫ t

0

1{Zσs >ρ2}X
>
s σs dBs

+

∫ t

0

1{Zσs >ρ2} ds+
1

2
Lσ,ρ

2

t

− d
∫ t

0

1{Zσs >ρ2} det(σsσ
>
s )

1
d ds.

(5.20)

By Lemma 5.1, we have the bound

d det(σsσ
>
s )

1
d ≤ Tr(σsσ

>
s ) = 1, (5.21)

for any σ ∈ U , and so by non-negativity of the local time, we have

w(Zσ
t )− w(ξ) + d

∫ t

0

f(Xσ
s ) det(σsσ

>
s )

1
d ds ≥ 2

∫ t

0

1{Zσs >ρ2}X
>
s σs dBs.

By the optional sampling theorem,

w(ξ) ≤ Eξ
[
w(Zσ

τ ) + d

∫ τ

0

f(Xσ
s ) det(σsσ

>
s )

1
d ds

]
= Eξ

[
d

∫ τ

0

f(Xσ
s ) det(σsσ

>
s )

1
d ds

]
,

for any σ ∈ U .

We now find a minimising sequence of controls. Recall from Example 2.1, that we

seek controls that have zero local time on the internal boundary |x| = ρ. However,

the penalisation of small determinants now forces us to choose a control that has as

large a determinant as possible within the constraint (5.21).

Let σ ∈ U be any control such that det(σtσ
>
t ) = 1

dd
for all t ≥ 0. For ε > 0,

define the control σε ∈ U by

σεt =

σt, |Xt| ∈ (0, ρ− ε] ∪ [ρ+ ε, R),

1
|Xt|

[
X⊥t ; 0; · · · ; 0

]
, |Xt| ∈ (ρ− ε, ρ+ ε),

for some X⊥ that satisfies X>t X
⊥
t = 0, for all t ≥ 0.

198



5.6. Relationship between value functions

This control corresponds to following any strategy with high determinant except

in an annulus of width 2ε. In this annulus, the controlled process follows tangential

motion, as defined in Definition 2.3, and has a deterministically increasing radius,

ensuring that the process does not return to the inner ball.

Since Zσε is deterministically increasing in the interval ((ρ − ε)2, (ρ + ε)2), the

local time at ρ2 is Lσ
ε,ρ2

t = 0, for all t ≥ 0. Also note that, for |Xt| ∈ (ρ− ε, ρ+ ε),

we have

det
(
σεtσ

ε
t
>) = 0.

Hence, applying the optional sampling theorem to (5.20), for any ε > 0, we have

that

w(ξ) = Eξ
[
w
(
Zσε

τ

)
+ d

∫ τ

0

f
(
Xσε

s

)
det
(
σεsσ

ε
s
>) 1

d ds

]
− Eξ

[∫ τ

0

1{Zσεs ∈((ρ−ε)2,(ρ+ε)2)} ds

]
.

We can make similar calculations to those in the proof of Proposition 2.5 to find

that, for any t ≥ 0,

0 ≤ Eξ
[∫ t

0

1{Zσεs ∈((ρ−ε)2,(ρ+ε)2)} ds

]
≤
∫ (ρ+ε)2−(ρ−ε2)

0

ds = (ρ+ ε)2 − (ρ− ε)2

= 4ρε
ε↓0−−→ 0.

Therefore taking the limit as ε ↓ 0 gives

w(ξ) = lim
ε↓0

Eξ
[
w
(
Zσε

τ

)
+ d

∫ τ

0

f
(
Xσε

s

)
det
(
σεsσ

ε
s
>) 1

d ds

]
= lim

ε↓0
Eξ
[
d

∫ τ

0

f
(
Xσε

s

)
det
(
σεsσ

ε
s
>) 1

d ds

]
,

and we conclude that

vFJ(x) = w(|x|2).

We now show that the value function vG coincides with vFJ and v.

Proposition 5.43. In Example 5.41, the value function vG is given by

vG(x) =

ρ2 −R2, |x| ≤ ρ,

|x|x −R2, |x| ∈ (ρ,R),

and so vS = vW = vWG = vSG = vSFJ = vWFJ in D.
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5.6. Relationship between value functions

We aim to replicate tangential motion on the internal boundary {x ∈ D : |x| = ρ}
with some control σ ∈ UG. To satisfy the determinant constraint, we consider

controls of the following form.

Let x ∈ D and let y1, . . . , yd ∈ Rd be orthogonal vectors with y1 = x and

y>i yj = δij |x|2, for each i, j = 1, · · · , d. Let λ = (λ1, . . . , λd)
> ∈ (0,∞)d satisfy∏d

i=1 λ
2
i = 1

dd
, and define

σλ(x) =
1

|x|

[
λ1y1; · · · ; λdyd

]
.

Then det
(
σλ(x)σλ(x)>

)
= 1

dd
, and so σλ(x) ∈ UG. Note also that we have

Tr
(
σλ(x)σλ(x)>

)
=

d∑
i=1

λ2
i . (5.22)

Taking λ1 small, the control σλ(Xt) concentrates the controlled process around

the subspace orthogonal to its radius, thus approximating tangential motion. How-

ever, the constraint
∏d

i=1 λ
2
i = 1

dd
combined with the AM-GM inequality implies

that the trace given in (5.22) becomes large. This means that the process has high

quadratic variation and leaves the domain in a shorter time. Since the cost f is

negative, spending less time in the domain results in a higher cost, which is unde-

sirable.

We therefore need a trade-off between how well we approximate tangential mo-

tion and how low we keep the quadratic variation. To do this, we fix an annulus

around the internal boundary, inside which we take a small value of λ1, as shown

in Figure 5.1. Outside of this annulus we will take all elements of λ to be equal, in

order to minimise the quadratic variation. The scaling that leads to an optimising

sequence of controls is to take the width of the annulus and the parameter λ1 to

zero at the same rate.

Proof of Proposition 5.43. Once again, define w : (0, R2)→ R by

w(ξ) =

ρ2 −R2, |x| ≤ ρ,

ξ −R2, |x| ∈ (ρ,R).

Fix σ ∈ UG. Following the proof of Lemma 2.2, we find that the squared radius

process defined by Zσ
t := |Xσ

t |
2, for t ≥ 0, satisfies the SDE

dZσ
t = 2X>t σt dBt + Tr(σtσ

>
t ) dt.
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5.6. Relationship between value functions

f = 0

f = −1
ρ

R g ≡ 0

Figure 5.1: Cost function for Example 5.41 with the annulus used to define a min-
imising sequence of controls highlighted

Fixing ξ ∈ [0, R2), we can apply the Itô-Tanaka formula to find that, for any t ≥ 0,

w(ξ) = Eξ
[
w(Zσ

t )−
∫ t

0

1{Zσt ∈(ρ2,R2)}Tr(σsσ
>
s ) ds+

1

2
Lσ,ρ

2

t

]
. (5.23)

By Lemma 5.1, we have Tr(σsσ
>
s ) ≥ 1, since σs ∈ UG, for each s ≥ 0. Therefore, for

any t ≥ 0,

w(ξ) ≤ Eξ
[
w(Zσ

t )−
∫ t

0

1{Zσt ∈(ρ2,R2)} ds

]
.

We now seek a minimising sequence of controls. Fix δ ∈ (0,min{ρ2, R2 − ρ2})
and define the control νδ ∈ UG as follows. Define λ = (λ1, . . . , λd)

> by

λ1 = δ, λi =

(
1

δ2dd

) 1
2(d−1)

,

and define λ̂ = (λ̂1, . . . , λ̂d)
> by

λ̂i =

√
d

d
, i = 1, . . . , d.

Then let

νδt =

σλ(Xt), |Xt|2 ∈ (ρ2 − δ, ρ2 + δ),

σλ̂(Xt), |Xt|2 ∈ (0, ρ2 − δ] ∪ [ρ2 + δ).

This choice of control corresponds to speeding up the process and concentrating its
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5.6. Relationship between value functions

path around the subspace orthogonal to the radius when the process is close to the

internal boundary.

Fix t ≥ 0. We claim that

lim
δ↓0

Eξ
[
w(Zνδ

t )−
∫ t

0

1{Zνδs ∈(ρ2,R2)} ds

]
= w(ξ).

Starting from (5.23), we need to show that

lim
δ↓0

Eξ
[∫ t

0

1{Zνδs ∈(ρ2,R2)}
(

Tr
(
νδsν

δ
s

>
)
− 1
)

ds

]
= 0,

and

lim
δ↓0

Eξ
[
Lν

δ,ρ2

t

]
= 0.

Define the Green’s function G and speed measure m for the process Zσδ on

the interval [ρ2 − δ, ρ2 + δ], as in Definition B.4 and Definition B.3. Then, by

Proposition B.5, we can write

Eξ
[∫ t

0

1{Zνδs ∈(ρ2,R2)}
(

Tr
(
νδsν

δ
s

>
)
− 1
)

ds

]
=

(
d∑
i=1

λ2
i − 1

)∫ ρ2+δ

ρ2
G(ξ, y)m(dy).

Define λ =
2λ21∑d
i=1 λ

2
i

. Then the speed measure m is given by

∫
m(dy) =

1

2λ2
1

∫
exp

{
−c− y

λ

}
dy,

and the Green’s function G is given by

G(ξ, y) =
λ
(

exp
{
−ρ2−δ−c

λ

}
− exp

{
−y−c

λ

}) exp{− ξ
λ
}−exp

{
− ρ

2+δ

λ

}
exp
{
− ρ2−δ

λ

}
−exp

{
− ρ2+δ

λ

} , y ∈ (ρ2 − δ, ξ],

λ
(

exp
{
−ρ2−δ−c

λ

}
− exp

{
− ξ−c

λ

}) exp{− y
λ
}−exp

{
− ρ

2+δ

λ

}
exp
{
− ρ2−δ

λ

}
−exp

{
− ρ2+δ

λ

} , y ∈ [ξ, ρ2 + δ).

Suppose that ξ < ρ2. Then we find that

∫ ρ2+δ

ρ2
G(ξ, y)m(dy) =

1∑d
i=1 λ

2
i

1− exp
{
ρ2−δ−ξ

λ

}
1− exp

{
−2δ

λ

} [
δ − λ

(
1− exp

{
− δ
λ

})]
.

(5.24)
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We now make use of the choice to scale the parameter λ1 and the width of the

annulus δ so that they go to zero at the same rate. In particular, since we have

chosen λ1 = δ, we have the limits

d∑
i=1

λ2
i = δ2 + (d− 1)

(
1

ddδ2

) 1
d−1 δ↓0−−→ +∞,

λ =
2δ2∑d
i=1 λ

2
i

δ↓0−−→ 0,

and
2δ

λ
=

2δ
∑d

i=1 λ
2
i

2δ2
=

∑d
i=1 λ

2
i

δ

δ↓0−−→ +∞.

Therefore taking the limit δ ↓ 0 in (5.24) gives

lim
δ↓0

∫ ρ2+δ

ρ2
G(ξ, y)m(dy) = 0,

and so

lim
δ↓0

Eξ
[∫ t

0

1{Zνδs ∈(ρ2,R2)}
(

Tr
(
νδsν

δ
s

>
)
− 1
)

ds

]
= 0.

We can make a similar calculation for any value of ξ.

We now consider the local time term. Note that, in the interval (ρ2 − δ, ρ2 + δ),

the quadratic variation of Zνδ is given by

d〈Zνδ〉t = 4δ2Zνδ

t dt.

Then, by the expression for local time given in Corollary 1.9 of [51, Chapter VI], we

have

0 ≤ Eξ
[
Lν

δ,ρ2

t

]
= lim

ε↓0

4δ2

ε
Eξ
[∫ t

0

1{Zνδs ∈[ρ2,ρ2+ε)}Z
νδ

s ds

]
.

Using Proposition B.5 again, we can rewrite this as

0 ≤ Eξ
[
Lν

δ,ρ2

t

]
= lim

ε↓0

4δ2

ε

∫ ρ2+ε

ρ2
G(ξ, y)y m(dy).

For ξ < ρ2, we calculate that

lim
ε↓0

1

ε

∫ ρ2+ε

ρ2
G(ξ, y)y m(dy) =

ρ2∑d
i=1 λ

2
i

1− exp
{
ρ2−δ−ξ

λ

}
1− exp

{
−2δ

λ

} ,
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and so, taking the limit as δ ↓ 0, we have

lim
δ↓0

Eξ
[
Lν

δ,ρ2

t

]
= 0.

Once again, we can make a similar calculation for any value of ξ.

Applying the optional sampling theorem to (5.23), we conclude that

w(ξ) = inf
σ∈UG

Eξ
[
w(Zσ

τ )−
∫ τ

0

1{Zστ ∈(ρ2,R2)} ds

]
= inf

σ∈UG
Eξ
[∫ τ

0

−1{Zστ ∈(ρ2,R2)} ds

]
,

and so

vG(x) = w(|x|2).

In Proposition 2.5, we proved that v(x) = w(|x|2), and in Proposition 5.42 we also

proved that vFJ(x) = w(|x|2). Hence we have the equality

v = vFJ = vG.

We now show that equality between the value functions does not always hold.

Restricting ourselves to two dimensions, the next example shows that, for a smooth

decreasing cost function, we cannot have equality unless the cost is constant.

Proposition 5.44. Fix d = 2 and R > 0, and let D = BR(0) ⊂ R2. Let f̃ : [0, R)→
R− be a continuously differentiable decreasing function and define f : D → R by

f(x) = f̃(|x|), for x ∈ D. Suppose moreover that f is not constant on D, and set

g ≡ 0. Then, for any x ∈ D,

v(x) = 2

∫ R

|x|
f̃(s)s ds,

and there exists x′ ∈ D such that

vFJ(x′) = vG(x′) > v(x′).

Proof. We first verify the form of the value function v, noting that we can apply

Proposition 2.15 to see that v = V , where V is the candidate value function defined

in Definition 2.14.

Since the cost function f̃ is decreasing on the whole interval (0, R), the function

V is defined in Case II of Definition 2.14, with r0 = 0 and R ∈ (0, s0). Therefore,
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5.6. Relationship between value functions

by Proposition 2.15 we have that

v(x) = V (x) = 2

∫ R

|x|
f̃(s)s ds,

for x ∈ D.

We now show that the value function vG is not equal to v. Corollary 5.37 states

that vG is a convex viscosity solution of the Monge-Ampère equation (5.1). We will

show that v does not solve the Monge-Ampère equation.

Under the assumption that f̃ is continuously differentiable, v is twice continu-

ously differentiable and we can calculate

D2v(x) = −2f̃(|x|)I − 2f̃ ′(|x|) |x|−1 xx>

= − 2

|x|2

[
|x| f̃(|x|) + f̃ ′(|x|)x2

1 f̃ ′(|x|)x1x2

f̃ ′(|x|)x1x2 |x| f̃(|x|) + f̃ ′(|x|)x2
2

]
.

Therefore

det
(
D2v(x)

)
= [−2f̃(|x|)]2 + 4 |x| f̃(|x|)f̃ ′(|x|)

≥ [−2f̃(|x|)]2,

with equality if and only if either f̃ = 0 or f̃ ′ = 0. Under our assumption that f is

not constant, there exists x ∈ D for which we have the strict inequality

det
(
D2v(x)

)
> [−2f̃(|x|)]2.

Therefore v is not a classical solution of the Monge-Ampère equation (5.1) in D.

Since v is twice continuously differentiable, this implies that v is not a convex vis-

cosity solution of the Monge-Ampère equation in D. Hence, by Corollary 5.37, there

exists x′ ∈ D such that vG(x′) 6= v(x′).

Referring to the ordering proved in Theorem 5.40, we have that

v(x′) < vG(x′) = vFJ(x′).

We conclude by presenting a specific example of a linear cost function that fits

into the setup of Proposition 5.44. For this example, we can compute the value

function vG = vFJ explicitly.
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Example 5.45. Fix d = 2 and R > 0, and let D = BR(0) ⊂ R2. Set g ≡ 0 and

define f : D → R by f(x) = − |x|
R

, for all x ∈ D. Then

v(x) =
2

3R

(
|x|3 −R3

)
, x ∈ D,

and

vFJ(x) = vG(x) =

√
2

3R

(
|x|3 −R3

)
> v(x), x ∈ D.

Proof. Substituting the form of the cost function f into the value function from

Proposition 5.44 above, we find that

v(x) =
2

3R

(
|x|3 −R3

)
, x ∈ D.

Now define V : D → R to be our candidate for the value function vG,

V (x) :=

√
2

3R

(
|x|3 −R3

)
, x ∈ D.

We will show that V is a classical solution of the Monge-Ampère problem (5.14) and

then appeal to Corollary 5.37 to prove that vG = V .

For x ∈ D, we calculate

D2V (x) =

√
2

R |x|
[
xx> + |x|2 I

]
,

and so

det(D2V (x)) =
2

R2 |x|2
(
(2x2

1 + x2
2)(x2

1 + 2x2
2)− x2

1x
2
2

)
=

4

R2
|x|2 = (−2f(x))2 .

For x0 ∈ ∂D, we have |x0| = R, and so

lim
x→x0

V (x) = 0.

Therefore V is a classical solution, and hence a convex viscosity solution, of the

Monge-Ampère problem (5.14).

By Corollary 5.37, which states that the value function vG is the unique viscosity

solution of (5.14), we conclude that vG = V .
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We have now shown that, for x ∈ D,

v(x) =
2

3R

(
|x|3 −R3

)
<

√
2

3R

(
|x|3 −R3

)
= vG(x) = vFJ(x),

where the final equality follows from Theorem 5.40.

We have shown that the value functions defined in this chapter are equal to each

other and bounded from below by the value function v defined in Section 1.4.1.

From Example 5.41, we see that there are instances where all of the value functions

coincide. However, Proposition 5.44 shows that this is not always the case.
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APPENDIX A

COMPARISON PRINCIPLES FOR CONVEX VISCOSITY

SOLUTIONS

In Proposition 5.22, we proved uniqueness for the Dirichlet problem (5.9) for the

Monge-Ampère equation. We took the comparison principle for the HJB equation

(5.3) from Feng and Jensen’s paper [24], and then used the equivalence between

viscosity solutions of (5.3) and convex viscosity solutions of (5.1), which is also

proved in [24]. We noted in Remark 5.23 that alternative methods of proof are

possible.

In this appendix, we state and prove two comparison principles for convex vis-

cosity solutions. The first result that we prove is a comparison principle for PDEs

that are elliptic on the set of convex functions and satisfy standard assumptions,

including coercivity of the differential operator in the zeroth order derivative. The

proof of this result requires an adaptation to the standard proof of comparison for

viscosity solutions and, in particular, depends on a convex version of the Crandall-

Ishii Lemma (Lemma 4.16), which we prove in Appendix A.3. We will take the key

idea for this proof from Section V.3 of [36], where Ishii and Lions state a comparison

principle for a Monge-Ampère equation.

Our second result is a comparison principle for the Monge-Ampère equation

(5.1). This is a special case of Theorem V.2 of [36]. As for the comparison principle

for the HJB equation in Proposition 4.19, we relax the coercivity assumption via

a perturbation argument, using the perturbation that is suggested in Section V.3

of [36].
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A.1 Comparison for PDEs that are elliptic on the

set of convex functions

Fix d ≥ 2 and let D ⊂ Rd. Consider a differential operator F : D×R×Rd×Sd → R
that satisfies

F (x, r, p,X) ≤ F (x, r, p, Y ) for X ≥ Y ≥ 0; (A.1)

i.e. the operator F is degenerate elliptic on the set of positive semi-definite matrices.

We say that the PDE

F
(
x, u(x), Du(x), D2u(x)

)
= 0 (A.2)

is degenerate elliptic on the set of convex functions.

We first show that a comparison principle holds for convex viscosity solutions of

the PDE (A.2) under the following assumptions.

Assumption A.1. Suppose that the following assumptions hold.

1. The domain D is open, bounded and convex ;

2. The operator F is continuous in each of its arguments;

3. The operator F is proper; i.e.

F (x, r, p,X) ≤ F (x, s, p,X) for r ≤ s;

4. The operator F is coercive in the zeroth order derivative; i.e. there exists

γ > 0 such that

F (x, s, p,X)− F (x, r, p,X) ≥ γ(s− r), for r ≤ s; (A.3)

5. There exists a function ω : [0,∞]→ [0,∞], with ω(0+) = 0, such that

F (y, r, α(x− y), Y )− F (x, r, α(x− y), X) ≤ ω(α |x− y|2 + |x− y|),

for any α > 0, whenever X and Y are non-negative definite and satisfy the

following matrix inequality:

− 3α

[
I 0

0 I

]
≤

[
X 0

0 −Y

]
≤ 3α

[
I −I
−I I

]
. (A.4)
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These assumptions agree with Assumption 4.10, except for the additional re-

quirement of convexity of the domain in the first statement, and the relaxation of

the fifth statement to consider only non-negative definite matrices.

The comparison principle that we prove is a consequence of the following adap-

tation to the Crandall-Ishii Lemma (Lemma 4.16).

Lemma A.2. Let D ⊂ Rd be open, convex and locally compact, let u1, u2 ∈ USC(D),

with u1 convex and u2 concave, and suppose that the assumptions of Lemma 4.16 are

satisfied. Then, for every ε > 0, there exist matrices X1, X2 ∈ Sd, with X1 positive

semi-definite and X2 negative semi-definite, such that conditions (4.18), (4.19) in

Lemma 4.16 hold.

Compared with Lemma 4.16, we require the additional assumption that u1 is

convex and u2 is concave, and we get the additional result that X1 is positive semi-

definite and X2 is negative semi-definite.

We now show that this result is exactly what we require to prove comparison,

delaying the proof of the lemma until Appendix A.3. The following theorem is the

convex analogue of Theorem 4.12.

Theorem A.3 (Comparison for convex solutions). Let D ⊂ R and F : D × R ×
Rd × Sd be such that Assumption A.1 is satisfied and the ellipticity condition (A.1)

for positive definite matrices holds. Suppose that

u ∈ USC(D) is a convex viscosity subsolution of (A.2),

v ∈ LSC(D) is a convex viscosity supersolution of (A.2),

and

u ≤ v on ∂D.

Then

u ≤ v on D.

Proof. This is a straightforward adaptation of the proof of the standard comparison

principle for viscosity solutions given in Theorem 4.12, which is presented in detail

as the proof of Theorem 3.3 in [13]. The following proof therefore has much in

common with the proof of Lemma 4.17 and we omit some of the repetitive details.

The proof relies on the variation of the Crandall-Ishii Lemma given by Lemma

A.2. We apply this lemma to the function ϕ : D
2 → R, defined as in the proof of

Lemma 4.17 by

ϕ(x1, x2) =
1

2
x>Ax, x1, x2 ∈ D,
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where

x =

[
x1

x2

]
and A = α

[
I −I
−I I

]
,

for some α > 0. We recall that

Dx1ϕ(x) = α(x1 − x2), Dx2ϕ(x) = α(x2 − x1),

D2ϕ ≡ A, (D2ϕ)2 = A2 = 2αA,

and ∥∥D2ϕ
∥∥ = inf

{∣∣ξ>Aξ∣∣ : ξ ∈ R2d, |ξ| ≤ 1
}

= 2α.

We suppose for contradiction that there exists z ∈ D such that

u(z)− v(z) = δ, for some δ > 0. (A.5)

Let xα ∈ D2
be a maximiser of

u(xα1 )− v(xα2 )− α

2
|xα1 − xα2 |

2 ,

which is guaranteed to exist by compactness of D
2

and upper semicontinuity of u−v.

Note that, as shown in [13],

α |xα1 − xα2 |
2 α→∞−−−→ 0 and |xα1 − xα2 |

α→∞−−−→ 0.

By the same argument as in the proof of Lemma 4.17, we can take α sufficiently

large that xα ∈ D2.

Now let ε > 0 and set u1 = u, u2 = −v. Since u and v are convex functions, it

follows that u1 is convex and u2 is concave. Therefore, we can apply Lemma A.2,

to see that there exist X1, X2 ∈ Sd such that

(α(xα1 − xα2 ), X1) ∈ J2,+

D u(xα1 ), (−α(xα1 − xα2 ), X2) ∈ J2,+

D (−v)(xα2 ),

and

− 3α

[
I 0

0 I

]
≤

[
X1 0

0 X2

]
≤ 3α

[
I −I
−I I

]
,

where we have chosen ε = α−1.

Furthermore, Lemma A.2 tells us that X1 ≥ 0 and X2 ≤ 0. This is the key addi-

tional property that we require for the case of convex viscosity solutions. Condition

(A.4) in Assumption A.1 is therefore satisfied with X = X1 and Y = −X2 both
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non-negative definite matrices. So, by the fifth statement of Assumption A.1, there

exists a function ω : [0,∞]→ [0,∞], with ω(0+) = 0, such that

F (x2, r, α(x1 − x2),−X2)− F (x1, r, α(x1 − x2), X1)

≤ ω
(
α |x1 − x2|2 + |x1 − x2|

)
.

(A.6)

Let γ > 0 be the coercivity constant in (A.3). Then, by the fourth statement of

Assumption A.1,

γ(u(xα1 )− v(xα2 )) ≤ F (xα1 , u(xα1 ), α(xα1 − xα2 ), X1)− F (xα1 , v(xα2 ), α(xα1 − xα2 ), X1).

Since

δ = u(z)− v(z) ≤ u(xα1 )− v(xα2 )− α

2
|xα1 − xα2 | ≤ u(xα1 )− v(xα2 ),

we have

δγ ≤ F (xα1 , u(xα1 ), α(xα1 − xα2 ), X1)− F (xα1 , v(xα2 ), α(xα1 − xα2 ), X1). (A.7)

Now, since u is a convex viscosity subsolution of (A.2), and (α(xα1 − xα2 ), X1) ∈
J

2,+

D u(xα1 ), with X1 ≥ 0, we have

F (xα1 , u(xα1 ), α(xα1 − xα2 ), X1) ≤ 0,

by Definition 5.17. We also have that

(α(xα1 − xα2 ),−X2) ∈ J2,−
D v(xα2 ),

and so, as v is a convex viscosity supersolution of (A.2) and −X2 ≥ 0, Definition 5.17

gives the inequality

F (xα2 , v(xα2 ), α(xα1 − xα2 ),−X2) ≥ 0.

We can now substitute the above inequalities into (A.7) and then apply (A.6), as in

the proof of Lemma 4.17, to arrive at

δγ ≤ ω
(
α |xα1 − xα2 |

2 + |xα1 − xα2 |
)
.

Since α |xα1 − xα2 |
2 → 0, as α→∞, and ω(0+) = 0, we can take the limit as α→∞

to find that

δγ ≤ 0.
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This contradicts our assumption (A.5), and so we conclude that u ≤ v on D.

A.2 Comparison for a Monge-Ampère equation

We now turn to proving a comparison principle for convex viscosity solutions of the

Monge-Ampère equation (5.1). Let f : D → (−∞, 0] be a continuous function. The

Monge-Ampère operator F , defined by

F (x, u, p,X) ≡ F (x,X) := − det(X) + (−2f(x))d,

does not satisfy the coercivity condition (A.3) in Assumption A.1, since there is no

dependence on the zeroth order derivative. Therefore we cannot apply Theorem A.3

directly to the Monge-Ampère equation (5.1).

In order to prove comparison for the Monge-Ampère equation, we use the same

perturbation technique that we used to prove comparison for the HJB equation (4.7)

in Proposition 4.19. In Lemma 4.17, we proved a comparison principle that does not

require the coercivity assumption, using the method outlined in Section 5.C of [13].

The following analogue of this result holds for convex viscosity solutions.

Lemma A.4. Let D ⊂ Rd and F : Rd × R× Rd × Sd → R satisfy statements 1, 2,

3 and 5 of Assumption A.1.

Let u ∈ USC(D) be a convex viscosity subsolution and v ∈ LSC(D) a convex

viscosity supersolution of (A.2), and suppose that

u ≤ v on ∂D.

Suppose moreover that, for each k ∈ N, there exists δk > 0 and a function ψk ∈
C2(D) such that

|ψk| ≤
1

k
,

and uk := u+ ψk is a convex viscosity subsolution of

F (x, uk, Duk, D
2uk) + δk = 0.

Then

u ≤ v on D.

Proof. The proof of this result is identical to the proof of Lemma 4.17, except for

two modifications. Viscosity solutions are replaced by convex viscosity solutions,
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and Lemma A.2, the convex variant of the Crandall-Ishii Lemma that we prove in

Appendix A.3, replaces Lemma 4.16. We do not reproduce the full proof here.

The following result is a special case of the comparison principle for a Monge-

Ampère equation that is stated in Theorem V.2 of [36]. In our result, the function

f depends only on the spatial variable x ∈ D, whereas in [36] Ishii and Lions

allow dependence on the value and gradient of the solution. We prove the result

by applying Lemma A.4 with (ψk)k∈N chosen to be a slight simplification of the

perturbation suggested in [36]. We note that the choice of perturbation will be the

same as in the proof of Proposition 4.19.

Proposition A.5. Suppose that Assumption 5.2 holds and that the function f :

D → R is continuous. Then we have the following comparison principle for the

Monge-Ampère equation (5.1).

Suppose that

u ∈ USC(D) is a convex viscosity subsolution of (5.1),

v ∈ LSC(D) is a convex viscosity supersolution of (5.1),

and

u ≤ v on ∂D.

Then

u ≤ v on D.

The proof follows the same reasoning as the proof of Proposition 4.19.

Proof. We first check that conditions 1, 2, 3 and 5 of Assumption A.1 hold.

1. The domain D is open and bounded by Assumption A.1.

2. We have assumed that f is continuous and so, since the determinant is a con-

tinuous function, the operator F : D × R× Rd × Sd defined by

F (x, r, p,X) ≡ F (x,X) = − detX + (−2f(x))d

is continuous in each of its arguments.

3. Let r ≤ s, then

F (x, r, p,X)− F (x, s, p,X) ≡ F (x,X)− F (x,X) = 0,
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and so F is proper.

5. Define G : Sd → R by G(X) = − detX. Then the operator F is of the form

F (x, r, p,X) = G(X) + (−2f(x))d.

By Lemma 5.3, F is degenerate elliptic on the set of non-negative definite matrices,

in the sense of (5.6). Then, by the same reasoning as in Remark 4.11, the fifth

statement of Assumption A.1 holds.

Now, since the coercivity condition in the fourth statement of Assumption A.1

does not hold, we appeal to Lemma A.4. We define the following perturbation to the

subsolution, which is the same perturbation used in Proposition 4.19, as suggested

in Section V.3 of [36].

Let m ∈ N and set C := supx∈D
|x|2
2

. Define ψm : D → R by

ψm(x) :=
1

m
exp

{
|x|2

2
− C

}
,

and um : D → R by

um(x) := u(x) + ψm(x),

for x ∈ D. Then

|ψm(x)| ≤ 1

m
exp{0} =

1

m
.

We now need to show that there exists δm > 0 such that um is a convex viscosity

subsolution of the PDE

− det(D2um) + (−2f)d + δm = 0.

The following section of the proof differs from that of Proposition 4.19. Fix

x0 ∈ D and let φ ∈ C∞(D) be such that x0 ∈ arg max(um − φ).

Then, since ψm ∈ C∞ and ψm ≥ 0, we have that (φ − ψm) ∈ C∞(D) and

x0 ∈ arg max(u − (φ − ψm)). As noted in Remark 5.16, (φ − ψm) is necessarily a

convex function, and so, since u is a convex viscosity subsolution of (5.1), we have

that

− det
(
D2φ(x0)−D2ψm(x0)

)
+
(
−2f(x0)

)d ≤ 0, (A.8)

by Definition 5.15.

Now recall that Lemma 5.4 states that, for any d × d symmetric positive semi-
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definite matrices A and B,

det(A+B) ≥ det(A) + det(B). (A.9)

We can take A and B to be the Hessian matrices of the functions ψm and (φ−ψm),

respectively, since both functions are smooth and convex. Then, by (A.9),

det
(
D2φ(x0)

)
= det

(
D2
(
φ(x0)− ψm(x0)

)
+D2ψm(x0)

)
≥ det

(
D2
(
φ(x0)− ψm(x0)

))
+ det

(
D2ψm(x0)

)
,

and so

− det
(
D2φ(x0)−D2ψm(x0)

)
≥ − det

(
D2φ(x0)

)
+ det

(
D2ψm(x0)

)
.

Hence, by (A.8), we have

− det
(
D2φ(x0)

)
+
(
−2f(x0)

)d
+ det

(
D2ψm(x0)

)
≤ 0. (A.10)

In the proof of Proposition 4.19, we caclulated that, for any x ∈ D,

D2ψm(x) =
1

m
exp

{
|x|2

2
− C

}(
I + xx>

)
,

and so, using the inequality (A.9) once more, we have

det
(
D2ψm(x0)

)
≥ 1

md
exp

{
d

(
|x0|2

2
− C

)}(
1 + det

(
x0(x0)>

))
≥ 1

md
exp {−dC} .

Defining δm := 1
md

exp {−dC}, the inequality (A.10) implies that

− det
(
D2φ(x0)

)
+
(
−2f(x0)

)d
+ δm ≤ 0.

Hence um satisfies the required subsolution property.

By Lemma A.4, we conclude that comparison holds.

Note that the above comparison principle depends on Lemma A.4, which depends

in turn on Lemma A.2, the convex variant of the Crandall-Ishii Lemma. We prove

Lemma A.2 in the following section.
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A.3 Proof of a convex Crandall-Ishii Lemma

We now prove Lemma A.2, the adaptation of the Crandall-Ishii Lemma to the

case of convex viscosity solutions. This will complete the proofs of the preceding

results in this appendix. We follow the proof of the standard Crandall-Ishii Lemma

(Lemma 4.16) that is given in the appendix of Crandall, Ishii and Lions’s User’s

Guide [13]. To adapt this proof to convex viscosity solutions, we use the observation

from Section V.3 of [36] on concavity of the sup-convolution of a concave function.

We now define the sup-convolution, as in the appendix of [13], and state some of its

important properties.

Definition A.6 (Sup-convolution). Let u : Rd → R and λ > 0. We define the

λ-sup-convolution ûλ : Rd → R by

ûλ(x) := sup
y∈Rd

{
u(y)− λ

2
|x− y|2

}
.

We give the straightforward proof of semiconvexity of the sup-convolution, as

in [13], in the following lemma. Recall from Definition 1.10 that, for λ > 0, we say

that a function u : Rd → R is λ-semiconvex if the map x 7→ f(x) + λ
2
|x|2 is convex.

Lemma A.7. For λ > 0, the sup-convolution ûλ is λ-semiconvex.

Proof. For any x ∈ D, we can write

ûλ(x) +
λ

2
|x|2 = sup

y∈Rd

{
u(y) +

λ

2

(
|x|2 − |x− y|2

)}
= sup

y∈Rd

{
u(y) +

λ

2
|y|2 − λx · y

}
.

The right-hand side is the supremum over functions that are linear in x, and is

therefore a convex function. This proves that ûλ is λ-semiconvex.

We now state two lemmas from the appendix of [13] without proof.

The following lemma on semiconvexity is taken from Lemma A.4 of [13], where

a proof is given using Aleksandrov’s Theorem and Jensen’s Lemma on semiconvex

functions. These additional lemmas are proved in Lemma A.2 and Lemma A.3

of [13], respectively.

Lemma A.8. Let f : Rd → R be λ-semiconvex, for some λ > 0. Let B ∈ Sd and

suppose that

max
x∈Rd

{
f(x)− 1

2
x>Bx

}
= f(0).

218



A.3. Proof of a convex Crandall-Ishii Lemma

Then there exists X ∈ Sd such that

(0, X) ∈ J2
f(0) and − λI ≤ X ≤ B.

The next lemma is taken from Lemma A.5 of [13], where it is referred to as the

magical property of the sup-convolution. Again we refer to [13] for the proof.

Lemma A.9 (Magical property of the sup-convolution). Fix λ > 0. Let x, p ∈
Rd and X ∈ Sd, and let u ∈ USC(Rd) be bounded above. Suppose that (p,X) ∈
J2,+ûλ(x). Then

(p,X) ∈ J2,+u
(
x+

p

λ

)
and ûλ(x) = u

(
x+

p

λ

)
− 1

2λ
|p|2 .

As a consequence,

(0, X) ∈ J2,+
ûλ(0) implies that (0, X) ∈ J2,+

u(0).

Before turning to the proof of the convex variant of the Crandall-Ishii Lemma,

we prove the following lemma, which we will apply to a sum of sup-convolutions in

the proof of Lemma A.2.

Lemma A.10. Let u1, u2 : D → R and define w : D2 → R by w(x) := u1(x1) +

u2(x2), for x = (x1, x2)> ∈ D2.

Suppose that X ∈ S2d is such that

(0, X) ∈ J2
w(0).

Then X is block-diagonal with

X =

[
X1 0

0 X2

]
,

and

(0, X1) ∈ J2
u1(0) and (0, X2) ∈ J2

u2(0).

Proof. Let (0, X) ∈ J
2
w(0). Then there exist sequences (xn)n∈N, (pn)n∈N and

(Xn)n∈N such that

(pn, Xn) ∈ J2w(xn), for all n ∈ N,

and

(xn, w(xn), pn, Xn)
n→∞−−−→ (0, w(0), 0, X).
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For a given n ∈ N, let xn1 , x
n
2 , p

n
1 , p

n
2 ∈ Rd, Xn

1 , X
n
2 ∈ Sd and Xn

12 ∈ Rd,d be such that

xn =

[
xn1

xn2

]
, pn =

[
pn1

pn2

]
, Xn =

[
Xn

1 Xn
12

Xn>
12 Xn

2

]
.

Also write

X =

[
X1 X12

X>12 X2

]
,

for matrices X1, X2 ∈ Sd and X12 ∈ Rd,d.

Noting that all matrix norms are equivalent, and making use of the Frobenius

norm, limn→∞X
n = X implies that∥∥∥∥∥

[
X1 −Xn

1 X12 −Xn
12

X>12 −Xn>
12 X2 −Xn

2

]∥∥∥∥∥
2

= ‖X1 −Xn
1 ‖

2 + ‖X2 −Xn
2 ‖

2 + 2 ‖X12 −Xn
12‖

2

n→∞−−−→ 0,

and so

lim
n→∞

Xn
1 = X1, lim

n→∞
Xn

2 = X2, and lim
n→∞

Xn
12 = X12.

Now, for each n ∈ N, since (pn, Xn) ∈ J2w(xn), we have that

w(x) = w(xn) + (pn)>(x− xn) + (x− xn)>Xn(x− xn) + o(|x− xn|2),

as x→ xn. We can write this as

u1(x1) + u2(x2) = u1(xn1 ) + u2(xn2 ) + (pn1 )>(x1 − xn1 ) + (pn2 )>(x2 − xn2 )

+
1

2
(x1 − xn1 )>Xn

1 (x1 − xn1 ) +
1

2
(x2 − xn2 )>Xn

2 (x2 − xn2 )

+ (x1 − xn1 )>Xn
12(x2 − xn2 ) + o(|x1 − xn1 |

2 + |x2 − xn2 |
2),

(A.11)

as x1 → xn1 and x2 → xn2 .

Choosing x2 = xn2 , the above equation gives us

u1(x1) = u1(xn1 )+(pn1 )>(x1−xn1 )+
1

2
(x1−xn1 )>Xn

1 (x1−xn1 )+o(|x1 − xn1 |
2), (A.12)

as x1 → xn1 . Therefore (pn1 , X
n
1 ) ∈ J2u1(xn1 ).

We know that (xn1 , u1(xn1 ), pn1 , X
n
1 )→ (0, u1(0), 0, X1), as n→∞, and so

(0, X1) ∈ J2
u1(0).
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Similarly, choosing x1 = xn1 , we have

u2(x2) = u2(xn2 )+(pn2 )>(x2−xn2 )+
1

2
(x2−xn2 )>Xn

2 (x2−xn2 )+o(|x2 − xn2 |
2), (A.13)

as x2 → xn2 , and so (pn2 , X
n
2 ) ∈ J2u2(xn2 ).

Since (xn1 , u2(xn2 ), pn2 , X
n
2 )→ (0, u2(0), 0, X2), as n→∞, we have

(0, X2) ∈ J2
u2(0).

Finally, we verify that X is block diagonal. Combining (A.12) and (A.13), we

have

u1(x1) + u1(x2) = u1(xn1 ) + u2(xn2 ) + (pn1 )>(x1 − xn1 ) + (pn2 )>(x2 − xn2 )

+
1

2
(x1 − xn1 )>Xn

1 (x1 − xn1 ) +
1

2
(x2 − xn2 )>Xn

2 (x2 − xn2 )

+ o(|x1 − xn1 |
2) + o(|x2 − xn2 |

2),

as x1 → xn1 and x2 → xn2 . Comparing this to (A.11), we must have that

(x1 − xn1 )>Xn
12(x2 − xn2 ) = o(|x1 − xn1 |

2 + |x2 − xn2 |
2),

as x1 → xn1 and x2 → xn2 , which only holds for Xn
12 = 0.

Since Xn
12 = 0 for all n ∈ N, and limn→∞X

n
12 = X12, we have that X12 = 0.

Hence

X =

[
X1 0

0 X2

]
,

as required.

We now use the preceding lemmas to prove the adaptation of the Crandall-Ishii

Lemma to the case of convex viscosity solutions. We follow the proof of the standard

Crandall-Ishii Lemma given in the appendix of [13].

Proof of Lemma A.2. The key step in adapting the proof to the case of convex

viscosity solutions is the observation made in Section V.3 of [36] that, since u2 is

concave, the sup-convolution ûλ2 defined in Definition A.6 is also concave, for any

λ > 0. We first prove this assertion.

Let u : Rd → R be a concave function and let λ > 0. Recall from Definition A.6

that the λ-sup-convolution ûλ : Rd → R is defined by

ûλ(ξ) := sup
y∈D

{
u(y)− λ

2
|ξ − y|2

}
, for ξ ∈ Rd.
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Take ξ1, ξ2 ∈ Rd and let ρ ∈ [0, 1]. Set ξ := ρξ1 + (1− ρ)ξ2. We wish to show that

ρûλ(ξ1) + (1− ρ)ûλ(ξ2) ≤ ûλ(ξ).

Let y1, y2 ∈ Rd and define y := ρy1 + (1− ρ)y2. Since u is concave, we know that

ρu(y1) + (1− ρ)u(y2) ≤ u(y). (A.14)

Note that

ξ − y = ρ(ξ1 − y1) + (1− ρ)(ξ2 − y2).

Then, since the map |·|2 : Rd → R+ is convex, we have

ρ |ξ1 − y1|2 + (1− ρ) |ξ2 − y2|2 ≥
∣∣ξ − y∣∣2 . (A.15)

Now, by definition,

ûλ(ξ) ≥ u(y)− λ

2

∣∣ξ − y∣∣2 .
Using the concavity and convexity conditions (A.14) and (A.15), we can bound the

right hand side of the above inequality by

u(y)− λ

2

∣∣ξ − y∣∣2 ≥ ρu(y1) + (1− ρ)u(y2)− λ

2

(
ρ |ξ1 − y1|2 + (1− ρ) |ξ2 − y2|2

)
= ρ

(
u(y1)− λ

2
|ξ1 − y1|2

)
+ (1− ρ)

(
u(y2)− λ

2
|ξ2 − y2|2

)
.

Since this inequality holds for all y1, y2 ∈ Rd, we can take the supremum over y1 ∈ Rd

and y2 ∈ Rd on the right hand side, and we conclude that

ûλ(ξ) ≥ ρûλ(ξ1) + (1− ρ)ûλ(ξ2),

as required.

We now use this fact to prove the lemma, following the same method as the

proof of the Crandall-Ishii Lemma (Lemma 4.16) given in the appendix of [13].

Let u1, u2 ∈ USC(D), with u1 convex and u2 concave, and define w : D2 → R by

w(x1, x2) = u1(x1) + u2(x2), x1, x2 ∈ D,

as in (4.16). Let x0 ∈ D2 and ϕ ∈ C2(D
2
) be such that x0 ∈ arg maxD2(w − ϕ), as

in (4.17). As noted in [13], we may assume, without loss of generality, that D = Rd,
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x0 = 0, u1(0) = u2(0) = 0, and

ϕ(x) =
1

2
x>Ax, for some A ∈ S2d.

Then we have

w(x)− 1

2
x>Ax ≤ (w − ϕ)(0) = u1(0) + u2(0) = 0, (A.16)

for any x ∈ D2.

Fix ε > 0. We aim to find a positive semi-definite matrix X1 and a negative semi-

definite matrix X2 such that the conditions (4.18) and (4.19) stated in Lemma 4.16

hold.

Let x, y ∈ R2d. Then, writing

x>Ax = (x− y)>A(x− y)− y>Ay + 2y>Ax

= (x− y)>A(x− y) + y>Ay + 2y>A(x− y),

we can use the Cauchy-Schwarz inequality to calculate

x>Ax ≤ (x− y)>A(x− y) + y>Ay + 2

√∣∣√εAy∣∣2 ∣∣∣∣ 1√
ε

(x− y)

∣∣∣∣2.
Noting that, for any a, b ∈ R+, 2

√
ab ≤ a+ b, we then have

x>Ax ≤ (x− y)>A(x− y) + y>Ay + εy>A2y +
1

ε
|x− y|2 .

Using the Cauchy-Schwarz inequality again, we see that

(x− y)>A(x− y) ≤ |A(x− y)| |x− y| ≤ ‖A‖ |x− y|2 .

Therefore, defining λ := ε−1 + ‖A‖, we have

x>Ax ≤ λ |x− y|2 + y>(A+ εA2)y.

Hence, by (A.16),

w(x)− λ

2
|x− y|2 ≤ 1

2
y>(A+ εA2)y.

Now define B := A + εA2. Then we can take the supremum over x ∈ Rd in the
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above inequality to see that, for any y ∈ Rd,

ŵλ(y) ≤ 1

2
y>By,

and so

ŵλ(y)− 1

2
y>By ≤ 0 = ŵλ(0).

By Lemma A.7, ŵλ is λ-semiconvex, so we can apply Lemma A.8 to see that there

exists X ∈ S2d such that

(0, X) ∈ J2
ŵλ(0) and − λI ≤ X ≤ B. (A.17)

We now note that ŵλ(y) = ûλ1(y1)+ûλ2(y2), for y1, y2 ∈ D. Therefore, by Lemma A.10,

we have

(0, X1) ∈ J2
ûλ1(0) and (0, X2) ∈ J2

ûλ2(0),

where

X =

[
X1 0

0 X2

]
is block-diagonal.

We now exploit the fact that ûλ2 is concave to prove that X2 ≤ 0. This is one of

the additional statements in the lemma, not present in the classical Crandall-Ishii

Lemma stated in Lemma 4.16, that will allow us to apply this result to convex

viscosity solutions.

Since (0, X2) ∈ J2,−
ûλ2(0), we know that there exist sequences (xn2 )n∈N, (pn2 )n∈N

and (Xn
2 )n∈N such that (pn2 , X

n
2 ) ∈ J2,−ûλ2(xn2 ), for each n ∈ N, and

(
xn2 , û

λ
2(xn2 ), pn2 , X

n
2

) n→∞−−−→
(
0, ûλ2(0), 0, X2

)
.

By Proposition 5.20 on equivalence of the two definitions of convex viscosity solu-

tions, there exists φn2 ∈ C∞(D), for each n ∈ N, such that

xn2 ∈ arg min
(
ûλ2 − φn2

)
and

(
Dφn2 (xn2 ), D2φn2 (xn2 )

)
= (pn2 , X

n
2 ) .

This means that each φn2 sits below the concave function ûλ2 , coming closest at xn2 .

Therefore φn2 is itself concave at xn2 . Hence

Xn
2 = D2φn2 (xn2 ) ≤ 0.

We have that Xn
2 → X2, and the set of non-positive definite matrices is closed.
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Therefore X2 ≤ 0. We also require that X1 is non-negative definite for this adap-

tation of the Crandall-Ishii Lemma. We will see later that this property follows

directly from convexity of u1 by a similar argument.

By the magical property of the sup-convolution stated in Lemma A.9, we have

that

(0, X1) ∈ J2,+
u1(0) and (0, X2) ∈ J2,+

u2(0).

Noting that Dxiϕ(0) = 0 for i = 1, 2, we have shown that condition (4.18) of

Lemma 4.16 holds.

We can now show that X1 ≥ 0. Since (0, X1) ∈ J2,+
u1(0), there exist sequences

(xn1 )n∈N, (pn1 )n∈N and (Xn
1 )n∈N such that (pn, Xn) ∈ J2,+u1(0), for each n ∈ N, and

(xn1 , u1(xn1 ), pn1 , X
n
1 )

n→∞−−−→ (0, u1(0), 0, X1).

By Proposition 5.20, there exists φn1 ∈ C∞(D), for each n ∈ N, such that

xn1 ∈ arg max(u1 − φn1 ) and
(
Dφn1 (xn1 ), D2φn1 (xn1 )

)
= (pn1 , X

n
1 ) .

This means that each φn1 sits above the convex function u1, coming closest at xn1 ,

and so φn1 is itself convex at xn1 . Hence

Xn
1 = D2φn1 (xn1 ) ≥ 0.

Since the set of non-negative definite matrices is closed and limn→∞X
n
1 = X1, we

have that X1 ≥ 0.

Finally, using the block-diagonal structure of X, and recalling the definitions

λ = ε−1 + ‖A‖ and B = A+ εA2, the inequality in (A.17) becomes

− (ε−1 + ‖A‖)I2d ≤

[
X1 0

0 X2

]
≤ A+ εA2.

Noting that D2ϕ ≡ A, we have shown that condition (4.19) of Lemma 4.16 holds.

We have now shown that (4.18) and (4.19) hold, and that X1 is non-negative

definite and X2 is non-positive definite, as required.
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APPENDIX B

SCALE FUNCTIONS AND SPEED MEASURES

In Chapter 2 and Chapter 5, we make use of the theory of scale functions and speed

measures, as set out, for example, in Section 3 of [51, Chapter VII] and in Section 6

of the lecture notes [23]. In this appendix, we summarise the definitions and results

that we use.

Let W be a standard one-dimensional Brownian motion, and let µ : R→ R and

σ : R→ R be Lipschitz functions. Let X be a one-dimensional diffusion satisfying

dXt = µ(Xt) dt+ σ(Xt) dWt.

The scale function of the diffusion X, as defined in Definition 3.3 of [51, Chapter

VII], describes how likely the diffusion is to move in either direction. As shown in

Exercise 3.20 of [51, Chapter VII], the scale function of X can be written in the

following form. Following Definition 6.1 of [23], we take this to be our definition of

the scale function.

Definition B.1 (Scale function). Define the scale function s : R→ R of the diffusion

X by

s(x) :=

∫ x

c

exp

{
−
∫ y

c

2µ(z)σ−2(z) dz

}
,

where c ∈ R is arbitrary.

Note that the scale function is defined uniquely up to an arbitrary constant c.

The choice of this constant will not play any role in the following results.

We will use the scale function to compute hitting probabilities via the following

result, as stated in Lemma 6.7 of [23], which is a reformulation of Proposition 3.2

of [51, Chapter VII] for our definition of the scale function.
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Proposition B.2. Let s : R → R be the scale function of the diffusion X. Then,

for any a, b, x ∈ R,with a < x < b,

Px [τb < τa] =
s(x)− s(a)

s(b)− s(a)
,

where τa and τb are defined to be the first hitting times of levels a and b, respectively,

by the diffusion X.

From the scale function, we can derive the speed measure of the process X, which

is defined in Definition 3.7 of [51, Chapter VII] and describes the time-change needed

to transform X into a Brownian motion. Again, we take our definition to be the

form found in Exercise 3.20 of [51, Chapter VII], which agrees with Definition 6.3

of [23] up to a multiplicative constant.

Definition B.3 (Speed measure). Define the speed measure m of the diffusion X

by ∫
A

m(dx) :=

∫
A

2

s′(x)σ2(x)
dx,

for any Borel set A ⊆ R, where s is the scale function of X.

We now introduce the Green’s function, which is defined in Definition 6.12 of [23]

using the scale function and speed measure. Here, we take our definition to be

consistent with the one used in Corollary 3.8 of [51, Chapter VII], which does not

include the speed measure in the form of the Green’s function.

Definition B.4 (Green’s function). Let I = (a, b) ⊂ R. Then the Green’s function

GI : I × I → R associated to X on the interval I is given by

GI(x, y) :=


(s(x)−s(a))(s(b)−s(y))

s(b)−s(a)
, a ≤ x ≤ y ≤ b,

(s(y)−s(a))(s(b)−s(x))
s(b)−s(a)

, a ≤ y ≤ x ≤ b.

The main result of this section is the following adaptation of both Corollary 3.8

of [51, Chapter VII] and Theorem 6.11 of [23]. We use this result several times to

calculate expected costs in Chapter 2 and Chapter 5.

Proposition B.5. Let I be an open interval and define τ := inf{t ≥ 0: Xt /∈ I}.
Then, for any Borel function f : I → R that is bounded either from above or below,

Ex
[∫ τ

0

f(Xs) ds

]
=

∫
I

GI(x, y)f(y)m(dy).
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