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(Xn)n∈{1,...N}, (Yn)n∈{1,...,N} real-valued stochastic processes

⇝ µ, ν probability measures on RN

How to choose a “good” distance d(µ, ν)?

E.g. Wasserstein distance W2:

W2
2 (µ, ν) := inf

T : T#µ=ν
E

󰀥
N󰁛

n=1

|Tn(X)−Xn|2
󰀦

Metrises weak convergence: µn ⇀ µ iff W2(µn, µ) → 0.
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Optimal transport

Probability measures µ, ν on RN

Find

inf
T : T#µ=ν

E

󰀥
N󰁛

n=1

|Tn(X)−Xn|2
󰀦
.

T (X) = (T1(X1, . . . , XN ), . . . , TN (X1, . . . , XN ))

Monge (1781), ...

Kantorovich (1942), ... ⇝ T random: replace (X,T (X)) with

coupling (X,Y ), X ∼ µ, Y ∼ ν.
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E.g. Acciaio, Aldous, Backhoff-Veraguas, Bartl, Beiglböck,

Bion-Nadal, Eder, Hellwig, Lassalle, Pammer, Pflug, Pichler,

Posch, Talay, among others ...
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µ, ν ∈ P(RN ) ⇝ AW2
2 (µ, ν) := inf

T : T#µ=ν
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Theorem [Rüschendorf ’85] [Posch ’23+]

Under a monotonicity condition, the unique optimiser is the

Knothe–Rosenblatt map TKR. This induces the adapted weak

toology.
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Applications to

• Stability in finance [Backhoff-Veraguas at al. ’20]

• Martingale Optimal Transport [Backhoff-Veraguas et al. ’18],

• Mimicking martingales [Pammer, R. , Schachermayer ’22]
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0
|Tt(X)−Xt|2dt
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Synchronous coupling

Continuous-time analogue of Knothe–Rosenblatt coupling

W = W̄

Theorem 1 [Backhoff-Veraguas, Källblad, R. ’22]

Optimising over adapted maps T

⇔
Optimising over correlations between W, W̄ .
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Synchronous coupling

Choose the same driving Brownian motion W = W̄ .
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dXt = b(Xt)dt+ σ(Xt)dWt ⇝ µ

dX̄t = b̄(X̄t)dt+ σ̄(X̄t)dW̄t ⇝ ν.

b, b̄ : R → R, σ, σ̄ : R → R+

Theorem 2 [Backhoff-Veraguas, Källblad, R. ’22]

Suppose that the coefficients are continuous with linear growth

and that pathwise uniqueness holds the synchronous coupling is

optimal.

Theorem 3 [R., Szölgyenyi ’23+]

Under very mild conditions, the synchronous coupling is optimal,

and we have an efficient method to compute AWp(µ, ν).
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Stability

Theorem 3 [Backhoff-Veraguas, Källblad, R. ’22]

Suppose that (W, W̄ ) ρ-correlated induces an optimal coupling for

AWp(µ
h, νh), for all h > 0.

Then (W, W̄ ) also induces an optimal coupling for the limiting

problem AWp(µ, ν).

Corollary

AWp(µ
h, νh) → AWp(µ, ν).

Theorem 2 [Backhoff-Veraguas, Källblad, R. ’22]

Suppose that the coefficients are continuous with linear growth

and that pathwise uniqueness holds.

Then the synchronous coupling is optimal for AWp(µ, ν).
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• SWp — cost of synchronous coupling;
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• Wp.
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