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Abriss

Das Ziel dieser Arbeit ist es, das Skorokhod'sche Einbettungsproblem und seine Lö-
sungsmethoden zu nutzen, um Theoreme im Feld der Finanzmathematik zu beweisen.
Wir sind vorwiegend daran interessiert, Preisuntergrenzen für gewisse Finanzoptionen
zu ermitteln. Hierbei wollen wir allerdings kein konkretes stochastisches Modell verwen-
den.

In Kapitel 1 stellen wir grundlegende Theorie zur Brown'schen Zufallsbewegung, zu Mar-
tingalen und zum Stochastischen Integral vor, um sicherzustellen, dass diese Arbeit von
allen Studierenden mit einem Basiswissen über Maÿtheorie und Wahrscheinlichkeitsthe-
orie gelesen werden kann. Wir formulieren Sätze wie das Optional Sampling Theorem,
Itô's Formel oder Radon�Nikodym und zeigen anhand von Beispielen, wie diese Sätze
verwendet werden können. Weiters stellen wir grundlegende Begri�e, Resultate und
Konzepte aus dem Feld der Finanzmathematik vor. Insbesondere de�nieren und erk-
lären wir Optionen, das Konzept der Preis�ndung mittels äquivalenten Martingalmaÿen,
das Black�Scholes Modell, replizierende Handelsstrategien und Arbitrage.

Im zweiten Kapitel zeigen wir anhand eines motivierenden Beispieles, wie man eine mod-
ellunabhängige Preisuntergrenze für die sogenannte digital option �nden kann. Weiters
formulieren und beweisen wir eine Version des Satzes von Breeden�Litzenberger und
stellen das Konzept von candidate price processes vor.

Wir stellen im dritten Kapitel das Skorokhod'sche Einbettungsproblem vor und disku-
tieren die Lösungen von Doob, Hall und Root. Wir gehen der Frage nach Existenz und
Eigenschaften von Lösungen nach und zeigen eine Optimalitätseigenschaft von Root's
Lösung.

Schlussendlich widmen wir uns in Kapitel 4 den �nanzmathematischen Anwendungen
des Einbettungsproblems. Wir verwenden Root's Lösung und dessen Optimalität, wobei
wir zwei verschiedenen Ansätzen folgen: Zunächst de�nieren wir das sogenannte Root
Model, um das Verhalten der zugrundeliegenden Aktie zu beschreiben, und zeigen, dass
der in diesem Modell berechnete Preis minimal ist und somit als untere Schranke dient.
Im zweiten Ansatz verwenden wir die Konstruktionen vom Beweis zu Root's Optimalität,
um ein subreplizierendes Portfolio für die gegebene Option zu ermitteln. Der Preis dieses
Portfolios liefert uns ebenfalls eine modellunabhängige Preisuntergrenze.
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Abstract

The goal of this thesis is to use the Skorokhod Embedding Problem and the methods
to solve it to prove statements in the �eld of mathematical �nance. Mainly we are
interested in �nding lower bounds for prices of options on volatility without specifying
a concrete stochastic model.

In chapter 1 we introduce some basic theory about Brownian motion, Martingales and
Stochastic Integral to make sure this thesis can be read by anyone with fundamental
knowledge about measure theory and probability theory. We state theorems like the
Optional Sampling Theorem, Itô's Formula and Radon�Nikodym and show with the
help of examples how they can be used. Further, we provide the reader with a detailed
introduction of important terms, theorems and concepts from the �eld of mathematical
�nance. In particular, we will de�ne and explain options, the concept of risk-neutral
pricing, the Black�Scholes Model, hedging strategies, arbitrage.

In chapter 2 we give a motivating example of a model-independent bound for the price
of a digital option. We formulate and prove a version of the theorem of Breeden and
Litzenberger, and introduce the concept of candidate price processes.

We introduce the Skorokhod Embedding Problem in Chapter 3 and discuss solutions of
Doob, Hall and Root. We answer the question about existence of solutions and establish
basic properties of such. Further, we explain in which sense Root's solution is optimal
and provide the reader with a detailed proof of this optimality property.

Last but not least, in chapter 4 we establish bounds for prices of options based on
volatility. An important tool is the Root solution of the Skorokhod Embedding Problem.
We will follow two di�erent approaches: First, we are going to de�ne the Root Model to
describe the behavior of the underlying stock, and show that prices computed by any
other model cannot be below the price of the option in the Root model by the optimality
property. In the second approach, we use constructions from the proof of optimality to
determine a subhedging portfolio for the option. The amount of money necessary to
acquire this portfolio yields a bound for the price of the option.





1 Basic Concepts and Terminology

In this section we follow mostly (but not only) the books of Lamberton [9], Le Gall
[10], Shreve [17] and Karatzas & Shreve [8]. We will give a brief overview of
basic de�nitions and properites of Brownian motion and martingales, and recall some
basic properties. We will de�ne variation and many forms of the stochastic integral.
Further, we'll discuss important results from stochastic analysis such as Itô's formula
or Girsanov. We'll introduce the Black�Scholes Model and hedging strategies, and the
concept of pricing options. Despite this introduction of the �eld of stochastic analysis
and mathematical �nance, some knowledge about measure theory, probability theory
and stochastic processes is required.

In this chapter we will always assume that all processes are de�ned on a �ltered proba-
bility space (Ω,F , (Ft)t≥0,P).

1.1 Brownian Motion

De�nition 1.1.
We call a real valued stochastic process W = (Wt)t≥0 a Brownian motion, if...

i) ...it is continuous, i.e. if the map s 7→ Ws(ω) is continuous P-a.s.

ii) ...the increments are independent, i.e for all s ≤ t we have that Wt −Ws is inde-
pendent of Fs

iii) ...the increments are stationary, i.e for all s ≤ t we have thatWt−Ws andWt−s−W0

have the same law.

We callW a standard Brownian motion, ifW satis�es i)-iii) and we additionally have:

W0 = 0 P- a.s E(Wt) = 0 ∀t ≥ 0 E(W 2
t ) = t

In this thesis we will always assume a Brownian motion to be standard. Note that for a
standard Brownian motion W we have V (Wt) = E(W 2

t )− E(Wt)
2 = E(W 2

t ) = t.

Also that this way of de�ning Brownian motion already gives us theMarkov Property:
For every s ≥ 0 we have that the process W̃ := Wt+s −Ws is again a Brownian motion
which is independent of Fs, i.e independent of all the values the original Brownian motion
W took before time s.

More detailed information about the Markov Property for Brownian motion can be found
in Karatzas & Shreve [8], who dedicated the sections 2.5 and 2.6 to this topic.

Very important for this thesis is the concept of stopping times, which should already
be familiar to the reader. We recall the de�nition and some basic properties from
Lamberton [9, Section 3.1].
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De�nition 1.2.
A stopping time with respect to the �ltration (Ft)t≥0 is a random variable τ with
values in R+ ∪ {∞}, such that for any t ≥ 0 we have

{τ ≤ t} ∈ Ft.

The associated σ-algebra is de�ned as

Fτ := {A ∈ F | ∀t ≥ 0 : A ∩ {τ ≤ t} ∈ Ft }.

Theorem 1.3.
Let S and T be two stopping times for the �ltration (Ft). Then:

i) S is FS measurable.

ii) If S is �nite a.s and (Xt)t≥0 is a continuous adapted process, then XS is FS

measurable.

iii) If S ≤ T a.s, then FS ⊆ FT .

iv) S ∧ T is a stopping time.

Note that, as any �xed t ≥ 0 is a stopping time, property iv) implies that S ∧ t is a
stopping time. This will be very useful later.

A good example for a stopping time is the hitting time of a Brownian motion of a closed
set A ⊆ R:

τA := inf{t ≥ 0 : Wt ∈ A}

One can �nd a proof of this claim in [10] [Le Gall, page 49].
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1.2 Martingales and the Optional Sampling Theorem

In this section we mostly use Le Gall [10] and Lamberton [9] to introduce the concept
of martingales.

De�nition 1.4.
We call the stochastic process M = (Mt)t≥0 a martingale with respect to the �ltration
(Ft), if...

i) ...Mt is integrable at all times, i.e ∀t ≥ 0 : E(|Mt|) <∞.

ii) ...M is adapted to F , i.e ∀t ≥ 0 : Mt is Ft measureable.

iii) ...∀s ≤ t : E(Mt|Fs) =Ms

If in iii) we have E(Mt|Fs) ≥Ms, we call M a submartingale. If we have E(Mt|Fs) ≤
Ms, we call M a supermartingale.

Loosely speaking, a martingale is a process which is expected to be fair on average.
Submartingales are expected to increase on average, and supermartingales are expected
to decrease on average.

Example 1.5 ([10], Page 50).
A Brownian motion (Wt) is always a martingale since it is adapted, integrable and for
every s ≥ 0 the increments Wt −Ws are independent from Fs:

E(Wt | Fs)−Ws = E(Wt −Ws | Fs) = E(Wt −Ws) = E(Wt)− E(Ws) = 0− 0 = 0

The �rst equality follows from the fact that Ws is Fs-measurable.

One can also show that the process (W 2
t − t) is a martingale as well:

Example 1.6.
Let W be a Brownian motion with respect to Ft. Then the process Mt := W 2

t − t is
an Ft-martingale. To show this, observe that (Mt) is clearly adapted and integrability
follows from

E(|W 2
t − t|) ≤ E(W 2

t )︸ ︷︷ ︸
t

+E(|t|)︸ ︷︷ ︸
t

= 2t.

It remains to show property iii). Remember that Wt = Wt −W0 has the same law as
Wt+s − Ws by property iii) of Brownian motion (see De�nition 1.1), and that W̃t =
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Wt+s −Ws is a Brownian motion, independent of Fs, by Markov Property:

E(W 2
t |Fs) = E((Wt+s −Ws)

2︸ ︷︷ ︸
W̃t

|Fs) = E(W̃ 2
t ) = t

Therefore, we have that

E(W 2
t − t|Fs) = E(W 2

t |Fs)− t = t− t = 0,

and Mt = W 2
t − t is a martingale.

Example 1.7.
Let Z ∈ L1 be an integrable random variable, and let (Ft) be a �ltration. Then the
process Mt := E(Z | Ft) is a martingale. To show this, note that (Mt) is integrable
because by de�nition of conditional expectation (see Shreve [17, 2.3.1, Page 68]) and
conditional Jensen (see Shreve [17, 2.3.2, Page 70]) we have

E(|Mt|) = E
(∣∣E(Z | Ft)

∣∣) ≤ E
(
E(|Z| | Ft)

)
= E(|Z|) <∞.

Further, note that by Iterated conditioning (see also Shreve [17, 2.3.2, Page 70]) we
have for s ≤ t:

E(Mt | Fs) = E
(
E(Z | Ft) | Fs

)
= E(Z | Fs) =Ms

One very important theorem we'll need later is the Optional Sampling Theorem (OST),
which we can �nd in Lamberton [9, Section 3.3]:

Theorem 1.8 (Optional Sampling Theorem, OST).
Let (Mt)t≥0 be a continuous martingale with respect to the �ltration (Ft)t≥0, and let τ1
and τ2 be two stopping times such that

τ1 ≤ τ2 ≤ K

for some �nite real number K. Then Mτ2 is integrable, and

E(Mτ2 | Fτ1) =Mτ1

A more detailed version of this theorem and the proof can be found in Karatzas &
Shreve [8, Section 1.3/C].

Note that this theorem implies that for any bounded stopping time τ we have

E(Mτ ) = E(M0),

and in most cases (because one often assumes F0 = {∅,Ω}) we even get E(Mτ ) =
E(M0) =M0 because M0 needs to be F0 measureable, hence constant.
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Remark 1.9.
There is also a version of the sampling theorem for submartingales Mt. In this case we
have

E(Mτ2 | Fτ2) ≥Mτ1 a.s

One �nds this in Lamberton [9, Remark 3.3.5].

With help of the OST we can show some interesting results about Brownian motion.
First we focus on the classical problem where we lock Brownian motion in an interval
[−a, b] and compute for each boundary −a and b the probability for the Brownian motion
to hit it before it hits the other one.

Theorem 1.10.
Let (Wt)t≥0 be a Brownian motion, and let −a < 0 < b. Let τa := inf{t > 0 | Wt = −a}
and τb := inf{t > 0 | Wt = −b} be two hitting times. Then:

P(τb < τa) =
a

a+ b

Proof.
First observe that τa and τb are hitting times of closed sets and therefore stopping times.
Further, the Markov Property allows us to shift the given interval [−a, b] by a to [0, a+b],
to make our computations easier. Note that now we need to assume that our Brownian
motion starts from a instead of 0.

Let T := τa ∧ τb, i.e we stop whenever Brownian motion hits the boundary, no matter
which one. As T is not bounded, and we would like to apply OST (1.8), let us work

15



with the stopping time T ∧n instead, where n is a natural number. The OST now gives
us

E(Wτ∧n)
OST
= E(W0) = a.

Our �nal argument is the Dominated Convergence Theorem (see Theorem 5.1):

E(WT ) = E( lim
n→∞

WT∧n)
DCT
= lim

n→∞
E(WT∧n)︸ ︷︷ ︸

a

= a

Note that the use of DCT is allowed since |Wt| ≤ a + b for any t ≤ T . Now we can
compute:

a = E(WT ) = E(0 · 1τ0<τa+b
+ (a+ b) · 1τa+b<τ0) = (a+ b) · P(τa+b < τ0)

The desired result follows directly.

We can also investigate the expected amount of time Brownian motion needs to hit the
boundaries:

Theorem 1.11.
Let (Wt)t≥0 be a Brownian motion. Then:

E(τa ∧ τb) = a · b

Proof.
Let T := τa ∧ τb be as above. We apply the OST (1.8) to the martingale Mt := W 2

t − t
(see Example 1.6 and the stopping time T ∧ n:

0 = E(M0)
OST
= E(MT∧n) = E(WT∧n)− E(T ∧ n)

We continue by using Monotone Convergence Theorem (see Theorem 5.2) and Domi-
nated Convergence Theorem (see Theorem 5.1):

E(T ) = E( lim
n→∞

T ∧ n) MCT
= lim

n→∞
E(T ∧ n) = lim

n→∞
E(W 2

T∧n)
DCT
= E( lim

n→∞
W 2

T∧n) = E(W 2
T )

This expectation can be computed with help of theorem 1.10:

E(W 2
T ) =

a

a+ b
· b2 + b

a+ b
· a2 = a · b

16



Another important result we will use later is Wald's Lemma:

Lemma 1.12 (Wald's �rst Lemma).
Let τ be an integrable stopping time, i.e E(τ) <∞. Then E(Wτ ) = 0.

Lemma 1.13 (Wald's second Lemma).
Let τ be an integrable stopping time, i.e E(τ) <∞. Then we have E(W 2

τ ) = E(τ)

One can �nd these results and the proofs in Mörters [11, Page 55].
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1.3 The Stochastic Integral

In this section you �nd a short overview of some basic terminology regarding the stochas-
tic integral. We will introduce for instance variation, quadratic variation, local martin-
gales, the spaces M2

c and H(M), and of course some di�erent versions of the integral
itself.

1.3.1 Finite Variation Integral

As a guideline we use Le Gall [10, Chapter 4].

De�nition 1.14.
Let T ⊆ R. We call f : T → R a càdlàg function, if ∀t ∈ T we have

lim
s↘t

f(s) = f(t)

and lims↗t f(s) exists. We call a stochastic process (Xt) a càdlàg process, if the paths
t 7→ Xt(ω) are càdlàg functions a.s.

Càdlàg functions and processes play a very important role in stochastic analysis, espe-
cially in the build up of the stochastic integral or for martingales. In this thesis, we
mostly work with continuous functions/processes, which are trivially càdlàg.

De�nition 1.15.
Let a : [0,∞) → R be a nondecreasing càdlàg function, and let da([s, t)) := a(t)− a(s)
be a measure. We de�ne the Lebesgue-Stieltjes integral of a function f with respect
to a as:

(f · a)(t) :=
∫ t

0

f(s) da(s)

If a = a1 − a2 can be written as di�erence of two nondecreasing càdlàg functions (but is
not necessarily càdlàg or nondecreasing itself!) we de�ne

(f · a)(t) := (f · a1)(t)− (f · a2)(t)

De�nition 1.16.
Let a : [0,∞) → R, n ∈ N and let

V n
t :=

⌊2n·t⌋−1∑
k=0

∣∣∣∣a(k + 1

2n

)
− a

(
k

2n

)∣∣∣∣.
We call the function V : t 7→ Vt := limn→∞ V n

t the total variation of a.
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Note that if a is an increasing function we always have∣∣∣∣a(k + 1

2n

)
− a

(
k

2n

)∣∣∣∣ = a

(
k + 1

2n

)
− a

(
k

2n

)
such that

V n
t = a

(
⌊2n · t⌋
2n

)
− a(0) <∞

Therefore, an increasing function always has �nite total variation.

We de�ne the total variation of a stochastic process with the same idea. The only
di�erence is that we do not use the values of a given function, but the (random) values
of the stochastic process. One can think of the Total Variation of a process as the Total
Variation of the function de�ned by the (random) path of the stochastic process.

De�nition 1.17.
Let (At)t≥0 be a càdlàg adapted process. We de�ne the variation process (Vt)t≥0 by
Vt(ω) := limn→∞ V n

t (ω), where

V n
t (ω) =

⌊2n·t⌋−1∑
k=0

∣∣∣∣A k+1
2n

(ω)− A k
2n
(ω)

∣∣∣∣
If Vt <∞ we say that A has �nite total variation in [0, t).

De�nition 1.18.
Let (At) be a càdlàg adapted stochastic process with �nite total variation in [0, t), and
let (Ht) be a stochastic process such that

∀t ≥ 0 ∀ω ∈ Ω :

∫ t

0

|Hs(ω)|dAs(ω) ≤ ∞.

Then we de�ne the �nite variation integral of H w.r.t A as

(H · A)t(ω) :=
∫ t

0

Hs(ω) dAs(ω).

Remark 1.19.
Note that for �xed ω this is nothing but the Lebesgue-Stieltjes Integral of the function
t 7→ Ht(ω) with respect to the function t 7→ At(ω). Readers might notice that this is
only well de�ned if t 7→ At(ω) is either a nondecreasing càdlàg function, or at least can
be written as the di�erence of such. However, one can show that this is the case if and
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only if (At) is a process of �nite variation (see Le Gall [10, Page 74]). Therefore, our
integral is well de�ned.

This type of integral has the bene�t that it is not very complicated to construct, and
does not need any abstract theory from stochastic analysis. Unfortunately, it requires
the process against one integrates (i.e A in this chapter) to have �nite total variation.
This is a problem for us, as one can show that Brownian motion does not have �nite
variation. To prove this, one has to observe that Brownian motion is a local martingale
(see De�nition 1.20) and argue with help of [10, Theorem 4.8]:
A continuous local martingale (Mt) with M0 = 0 a.s and �nite variation (meaning the
corresponding variation process Vt satis�es Vt < ∞ for every t ∈ R) is constantly zero,
i.e Mt = 0 for all t ∈ R a.s.

1.3.2 Local Martingales and Previsible Processes

In this chapter we follow Le Gall [10, Chapter 4] to collect some de�nitions we need
for Itô's integral.

De�nition 1.20.
We call a continuous adapted process (Mt)t≥0 with M0 = 0 a.s a continuous local
martingale, if there exists a sequence T0 ≤ T1 ≤ . . . of stopping times such that:

i) Tn ↗ ∞, i.e Tn(ω) ↗ ∞ for every ω ∈ Ω.

ii) For every n the process MTn := (Mt∧Tn)t≥0 is a continuous martingale.

We say that (Tn)n≥0 reduces M . The space of continuous local martingales will be
denoted by Mc,loc.

Note that any continuous martingale is a continuous local martingale, as it clearly can
be reduced by the sequence Tn = n. The following de�nition will be needed when we
later discuss the theorems of Girsanov (see Theorem 1.42) and Dambis-Dubin-Schwarz
(see Theorem 3.3). First, we need the following lemma:

Lemma 1.21.
Let M be a continuous local martingale. Then there exists a unique increasing process
([M ]t)t≥0 such that the process M2

t − [M ]t is a continuous local martingale. Further, we
have that

[M ]t = lim
max |tk+1−tk|→0

∑
(Mtk+1 −Mtk)

2
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In a more precise formulation: For �xed t take an increasing sequence 0 = tn0 < tn1 <
· · · < tnpn = t of subdivisions of the interval [0, t]. The notation from above means

[M ]t = lim
n→∞

pn∑
i=1

(Mtni
−Mn

ti−1
)2.

De�nition 1.22.
The process [M ]t from Lemma 1.21 is called theQuadratic Variation of the continuous
local martingale (Mt).

As for any Brownian motion (Wt) we know that (W 2
t − t) is a continuous martingale

(see Example 1.6), uniqueness gives us [W ]t = t.

De�nition 1.23.
We call a continuous martingale M bounded in L2, if

sup
t≥0

∥Mt∥2 = sup
t≥0

(∫
Ω

M2
t dP

) 1
2

<∞.

The space of L2 bounded martingales will be denoted byM2, and the space of continuous
L2 bounded martingales will be denoted by M2

c

De�nition 1.24.
Let M and N be two continuous local martingales. The covariation of M and N is the
stochastic process

[M,N ]t :=
1

2
·
(
[M +N,M +N ]t − [M,M ]t− [N,N ]t

)
.

In Le Gall [10, Chapter 4.4] one can �nd many interesting properties about covariation.
The following property might help to gain some intuition:

[M,N ]t = lim
max |tk+1−tk|→0

∑
(Mtk+1 −Mtk) · (Ntk+1 −Ntk).

Further, one might note that the mapping (M,N) 7→ [M,N ]t is a symmetric bilinear-
form. This observation is a good entry point for analysis: One can study the structure
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of M2
c and look for interesting theorems based on theory from functional analysis. In-

terested readers may read Le Gall [10, Chapter 4].

The following de�nition can (in a little di�erent formulation) be found in Le Gall [10,
Page 43].

De�nition 1.25.
We call the σ-algebra P generated by the sets {A × (s, t] | s < t,A ∈ Fs} and {A ×
{0} | A ∈ F0} the previsible σ-algebra. A process (Ht) is called previsible, if it is P
measurable, i.e if the mapping H : Ω× [0,∞) → R is P measurable.

Intuitively, a previsible process is a process where you know the value Ht just a little
before time t. This will become useful later when we talk about trading strategies:
People trading with stock need to decide the amount of stock they want to hold at time
t a little bit before time t, even though this amount depends on the current stock price
and therefore on randomness.

Example 1.26.
Left continuous and right continuous adapted processes are previsible, as we can read in
Le Gall [10, Proposition 3.4, Page 43].

1.3.3 Itô's Integral

A rigorous construction of Itô's integral would require terminology from functional ana-
lyis, and lots of abstract argumentation. We will only give a brief introduction and
explain the basic ideas. In the end we will get a type of integral which also allows us
to integrate against Brownian motion, and also is compatible with the �nite variation
integral. This section summarizes [10, Chapter 5].

Our strategy is to de�ne the Itô-Integral �rst for M ∈ M2
c against simple processes (see

De�nition 1.27), and then use theory from functional analysis to de�ne it for M ∈ M2
c

against previsible processes.

De�nition 1.27.
We call a stochastic process (Ht)0≤t≤T simple, if ∃n ∈ N, ∃t1 ≤ · · · ≤ tn ≤ T such that
we can write

Ht(ω) =
n−1∑
k=0

Zk(ω) · 1(tk,tk+1](t),

where Zk is Ftk measurable and bounded for all k = 1, . . . n. We denote the set of all
simple processes by S.
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De�nition 1.28.
Let H = Ht(ω) =

∑n−1
k=0 Zk(ω) · 1(tk,tk+1](t) be a simple process, and let M ∈ M2

c .

The Itô-Integral of (Ht) against (Mt) is de�ned as the process

I(H)t := (H.M)t =
n−1∑
k=0

Zk ·
(
Mtk+1∧t −Mtk∧t

)

Now we are ready to de�ne Itô's integral against previsible processes. This requires some
argumentation with functional analysis, and also the introduction of new measures and
spaces. Interested readers can (as always) get a detailed and rigorous build up of this
theory in Le Gall [10, Chapter 5]. In this thesis we will just give a short overview of
the basic terms and results without any justi�cation and without explaining everything
properly.

For (Mt) ∈ M2
c we de�ne a measure µ on the previsible sigma-algebra P :

µ
(
A× (s, t]

)
:= E

(
1A · ([M ]t − [M ]s)

)
For a previsible process H ≥ 0 one can show that∫

Hdµ = E
(∫ ∞

0

Hs d[M ]s
)
,

where we use a �nite variation integral inside of the expectation. To make sure this is
well de�ned you need to remember that ([M ]t) is an increasing process (Lemma 1.21)
and is therefore of �nite variation (as we mentioned right after de�nition 1.16).

Now for our �xed (Mt) we de�ne the space

L2(M) := L2(Ω× [0,∞),P , µ),

where we can de�ne the norm

∥H∥M :=

(
E
(∫ ∞

0

H2
s d[M ]s

)) 1
2

.

One can show that L2(M) is nothing but the space of all previsible processes (Ht) with
∥H∥M <∞.

Last but not least, we use the fact that the space of simple functions S is dense in
L2(M), and extend the map I (which is currently de�ned on S) to L2(M): One can
show that there exists a unique embedding I : L2(M) → M2

c such that for H ∈ S we
always have I(H) = H ·M , i.e the Itô Integral for previsible processes is consistent with
the de�nition of the integral for simple processes. From this fact we can also take that
the Itô-Integral is an L2 bounded continuous martingale.
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1.4 Itô's Formula

A very important tool in mathematical �nance and in stochastic analysis is Itô's formula.
In this section we use Karatzas & Shreve [8, Section 3.3] and Revuz & Yor [13,
Chapter IV, � 3]. First, we need the following de�nition:

De�nition 1.29.
We call a stochastic process (Xt)t≥0 a continuous semimartingale, if it has the de-
composition

Xt = X0 +Mt +Bt a.s,

where Mt is a continuous local martingale, and Bt = A+
t − A−

t is the di�erence of
two nondecreasing adapted processes. We already mentioned that (Bt) can be written
as such if and only if it has �nite total variation. To summarize this, a continuous
semimartingale consists of two parts: a continuous local martingale, and a process of
�nite variation.

The covariation of two continuous semimartingalesX = X0+M+B and Y = Y0+M
′+B′

is given by the covariation of the local martingale parts:

[X, Y ]t := [M,M ′]t

This can be justi�ed by showing that

lim
max |tk+1−tk|→0

∑
(Xtk+1 −Xtk) · (Ytk+1 − Ytk) = [M,M ′]t

The intuition behind this is the observation that B does not contribute to quadratic
variation, as it is of �nite total variation. A proof of this can be found in [10] [LeGall,
Section 4.5].

1.4.1 Itô's Formula: Simple Version

First, we introduce Itô's formula for the simple case where we restrict ourselves to only
one dimension of time and only one dimension for space. Further, we only consider local
martingales here for simplicity.

Theorem 1.30 (Itô's formula, simple version).
Let M ∈ Mc,loc, and let f : [0,∞) × R → R be a C1,2 function, i.e once di�erentiable
w.r.t the �rst component t and twice di�erentiable w.r.t the second component x. Then:

f(t,Mt) = f(0,M0) +

∫ t

0

ft(s,Ms) ds+

∫ t

0

fx(s,Ms) dMs +
1

2
·
∫ t

0

fxx(s,Ms) d[Ms],

where ft(t, x) =
∂
∂t
f(t, x) and fx(t, x) =

∂
∂x
f(t, x) denote the partial derivatives of f .
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Readers who are familiar with stochastic calculus are used to the notation

df(t,Mt) = ft(t,Xt) dt+ fx(t,Mt) dMt + fxx(t,Mt) d[M ]t.

Remark 1.31.
Note that we have three di�erent types of integrals here:

� The integral
∫ t

0
ft(s,Xs) ds is the Riemann integral of a continuous function over

an interval.

� The integral
∫ t

0
fx(s,Xs) dMs is the Itô-Integral de�ned in the last section. It

is important to observe that the process (fx(t,Mt))t≥0 is continuous (as (Mt) is
continuous and f ∈ C1,2), and continuous processes are previsible (see Example
1.26).

� The integral
∫ t

0
fxx(s,Xs) d[M ]s is the Lebesgue-Stieltjes integral of t 7→ ∂2

∂x2f(t,Xt)
against the process [M ]t, which is nondecreasing and therefore of �nite total vari-
ation (see Remark 1.19).

All of these integrals depend on the path t 7→ Xt(ω) and therefore on randomness.

If one takes a Brownian motion (Wt) for the local martingale, it is useful to remember
the fact [W ]t = t and conclude d[W ]t = dt (see right under de�nition 1.22).

Example 1.32.
Let Wt be a Brownian motion, and let

Xt := e(µ−
σ2

2
)·t+σ·Wt ,

where µ and σ are real valued constants. We apply Itô's formula to f(t, x) = e(µ−
σ2

2
)·t+σ·x

(such that Xt = f(t,Wt)) and get:

dXt = (µ− σ2

2
) · e(µ−

σ2

2
)·t+σ·Wt︸ ︷︷ ︸

ft(t,Wt)

dt+ σ · e(µ−
σ2

2
)·t+σ·Wt︸ ︷︷ ︸

fx(t,Wt)

dWt +
1

2
· σ2e(µ−

σ2

2
)·t+σ·Wt︸ ︷︷ ︸

fxx(t,Wt)

dt

= e(µ−
σ2

2
)·t+σ·Wt ·

(
(µ− σ2

2
)dt+ σ dWt +

σ2

2
dt
)

= Xt · (µ dt+ σ dWt)

Itô's formula can also be used as a tool to show that a process is a local martingale:
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Example 1.33.
Let Zt := e−θ·Wt− 1

2
θ2t = f(t,Wt) for f(t, x) = e−θx− 1

2
θ2·x. We apply Itô to get

dZt = −1

2
· θ2 · Zt dt− θ · Zt dWt +

1

2
· θ2 · Zt dt

= −θ · Zt dWt,

and conclude

Zt = 1︸︷︷︸
Z0

−θ ·
∫ t

0

Zu dWu︸ ︷︷ ︸
martingale

,

which is a local martingale since the stochastic integral is a local martingale (see the
end of page 23).

1.4.2 Itô's Formula: General Version

Theorem 1.34 (Itô's formula: general version).
Let Xt = (X1

s , ..., X
d
s ) be a vector of continuous semimartingales and let f ∈ C2(Rd,R).

Then:

f(Xt) = f(X0) +
d∑

i=1

∫ t

0

∂

∂xi
f(Xs) dX

i
s +

1

2

d∑
i,j=1

∫ t

0

∂2

∂xixj
f(Xs) d[X

i
s, X

j
s ]

This theorem is a generalization of the simple version in many ways: First of all, we
do not restrict ourselves to local martingales and work with semimartingales instead.
Further, it allows us to use functions depending on more than one stochastic process, i.e
it is clearly a multi dimensional formula. Also, observe that there is no extra term for
time, so the function f does not necessarily take t as an argument. Of course one can
choose Xj

t = t anyway to add a component for time.
Itô's formula can also be written in di�erential notation:

df(Xt) =
n∑

i=1

∂

∂xi
f(Xt) dX

i
t +

1

2

n∑
i,j=1

∂

∂xixj
f(Xt) d[X

i, Xj]t

Example 1.35 ([13], Page 146).
Let X and Y be continuous local martingales. We want to compute d(XtYt) using Itô's
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formula. Let f(x, y) = xy:

df(Xt, Yt) = fx(Xt, Yt) dXt + fy(Xt, Yt) dYt +
1

2
· 2 · fxy(Xt, Yt) d[X, Y ]t

= Yt dXt +Xt dYt + d[X, Y ]t

If one sets X = Y this formula implies

dX2
t = 2 ·Xt dXt + d[X]t,

which reads as follows in integral form:

X2
t = X2

0 + 2 ·
∫ t

0

Xs dXs + [X]t

This does not only give us an expression for the local martingale X2
t − [X]t, but also a

possibility to compute [X]t:

[X]t = X2
t −X2

0 − 2 ·
∫ t

0

Xs dXs

1.4.3 Itô Processes

In this section we introduce Itô processes. It is easy to compute the quadratic variation
of this special type of process, which will be useful later. We use Lamberton [9, Section
3.4.2].

De�nition 1.36.
Let (Wt) be a Brownian motion on the �ltered probability space (Ω,F , (Ft)t≥0,P), and
let (Xt) be a stochastic process on the same probability space. We call (Xt) an Itô
process, if it can be written as

Xt = X0 +

∫ t

0

Ks ds +

∫ t

0

Hs dWs P a.s,

where..

i) ..X0 is F0 measurable,

ii) (Kt) and (Ht) are Ft adapted,

iii)
∫ t

0
|Ks|ds <∞ P a.s and

iv)
∫ t

0
|Hs|2ds <∞ P a.s.
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One can show that this decomposition is unique (see Lamberton [9, Page 66]), and
that the quadratic variation of an Itô process Xt is given by

[X]t =

∫ t

0

H2
s ds,

which can be found in Lamberton [9, Page 67].
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1.5 Change of Measure: The Radon�Nikodym Theorem

In this section we explain the concept of changing a measure and introduce the theorem
of Radon-Nikodym. Further, we shortly explain how this will be useful later when we
talk about pricing options. We summarize Shreve [17, Section 1.6].

The �rst important information in this section is that, if Z is a nonnegative random
variable with E(Z) = 1, the set function de�ned by

Q(A) :=

∫
A

Z dP

is a probability measure. All we do here is to reassign probabilities in Ω according to Z:
If Z > 1, the probabilities grow, and if Z < 1 the probabilities decrease. Very important
is here to note that nullsets of P are also nullsets of Q and vice versa. Whenever measures
P and Q satisfy this condition, we call them equivalent.

The reassignment of probabilities gives us the possibility to change the distribution of
a random variable without changing the random variable itself. Computations in this
setting can be easier and very useful, as we will see in the next section.

The second important information here is that there exists a relationship between the
expectations EQ (w.r.t Q) and E (w.r.t P). For any random variable X de�ned on the
probability space (Ω,F ,Q) we have:

EQ(X) = E(XZ)

This relationship is trivial for indicator functions 1A:

EQ(1A) = Q(A) =

∫
Ω

1A · Z dP = E(1A · Z),

and can be extended to simple functions g =
∑n

k=1 αk · 1Ak
by linearity. The �nal

argument is the fact that measurable functions can be approximated by an increasing
sequence of simple functions, and from Monotone Convergence Theorem (Theorem 5.2).
For details see Shreve [17]. Until now we were focusing on the situation that you have
one probability measure P and one reassigning function Z to get an equivalent measure
Q. The theorem of Radon�Nikodym tells us that for equivalent probability measures P
and Q we can always �nd such a random variable:

Theorem 1.37 (Radon�Nikodym, [17], Page 39).
Let P and Q be equivalent probability measures de�ned on (Ω,F). Then there exists a
nonnegative random variable Z such that EP(Z) = 1 and

Q(A) =

∫
A

Z dP.

The random variable Z will be denoted by dQ
dP and is called the Radon-Nikodym

derivative.
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Note that the property EQ(X) = E(X ·Z) with this notation (and with integrals instead
of expectations) reads ∫

Ω

X dQ =

∫
Ω

X · dQ
dP

dP,

and obviously explains the notation dQ
dP for Z.

Note that if one has P = λ, where λ denotes the Lebesgue measure on R, the random
variable Z is a real valued function R → R.

Let X be a (real valued) random variable with density f and law Q. In this case,
standard probability theory tells us

Q((−∞, x)) =

∫ x

−∞
f(x) dx,

which is an integral with respect to the Lebesgue measure λ. We can observe that the
Radon-Nikodym derivative in this simple case is the density we know from standard
probabilty theory.

The property EQ(X) = E(X · Z) from above now reads as follows:∫ ∞

−∞
x dQ =

∫ ∞

−∞
x · f(x) dx

Example 1.38.
Let X have exponential distribution, i.e the distribution function is F (x) = 1 − e−λx

for x ≥ 0 with λ ≥ 0. Let µ denote the distribution of X. Then X has density λ · e−λx,
and

E(X) =

∫ ∞

0

x dµ(x) =

∫ ∞

0

x · f(x)︸︷︷︸
λ·e−λx

dx = λ ·
(
−1

λ
e−λx · x

∣∣∣∣∞
0︸ ︷︷ ︸

0

+

∫ ∞

0

1

λ
e−λx dx

)

=

∫ ∞

0

e−λxdx = −1

λ
·
(
e−λx

∣∣∣∣∞
0︸ ︷︷ ︸

−1

)
=

1

λ
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1.6 Terminology from Mathematical Finance

In this section we introduce terminology as in Lamberton [9] and describe the classical
approach to mathematical �nance. We also use Shreve [17] and the �rst chapter of
Hobson [7].
We are modelling the price of some given stock (or asset) with a stochastic process
(Pt)0≤t≤T de�ned on some �ltered probability space (Ω,F , (Ft)0≤t≤T ,P). The time period
[0, T ] on which we observe the stock is assumed to be short enough such that it is
reasonable to assume that the interest rate is a constant r > 0.
The process (St)0≤t≤T with St := e−r·t is called the discounted stock price. It allows
us to compare the value of the stock at any time with other amounts of money or with
other stock prices at time 0.

The motivation for discounting P is the following: Assume that at time 0 you buy the
asset P at total cost P0. After that, the stock prices increases such that PT > P0. One
might think this is a success, because selling the option at time T would yield a pro�t
of PT − P0. However, you have to ask yourself the following question:
�How much money would I now have if I didn't invest in P and left the money on my
bank account instead? �.
In this case the amount P0 (units of money) on the bank account would grow with
interest rate r and at time T we would have erT ·P0. The real pro�t is e

rT ·P0−P0.

To summarize this: If we want to know if you really made pro�t by buying the asset
with price process (Pt), we need to check if PT > erT ·P0, i.e if at time T the discounted
stock price ST is bigger than P0.

Altogether we call (Ω,F , (Ft)0≤t≤T ,P, (St)0≤t≤T ) a market model.

We use a process (Ht)t≥0 to describe the amount of stock we hold at a time t. As we have
to decide the quantity Ht in�nitesimally before time t, we require H to be a previsible
process (see De�nition 1.25), and call H a trading strategy.

1.6.1 Options

In this thesis we will talk a lot about prices of so called options (or sometimes contingent
claims). We will introduce this term formally later in the Black�Scholes Model (see
De�nition 1.47). For now it is enough to explain some examples:

The most basic option is the so called European call option

Ccall = (PT −K)+,

where X+ = max{X, 0}. The owner of this option has the right to buy the stock at
maturity time T for the strike price K. If the stock price at time T exceeds K, the
owner of this option has a payo� of PT −K. If this is not the case, the owner does not
use this right as it would be negative payo�. Observe that the owner of the option only
makes pro�t if PT − K is higher than what they paid for the option. Buying a Call
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option is reasonable if one thinks the stock price is going to increase, i.e if one expects
PT > P0.

In this chapter we will discuss how to �nd fair prices for options by using the underlying
stochastic model. In the main part of this thesis, we will look for a possibility to compute
prices of more complicated options only by using prices of frequently traded options like
this.

The counterpart of the Call Option is the European put option

Cput = (K − PT )
+,

which allows the owner to sell the stock for the strike price K at maturity T . Buying a
Put Option is reasonable if one expects the stock price to fall until maturity.

These two options are introduced in Shreve [17] on the pages 155 and 163. In [17]
one can (among many others) also �nd American options (page 339), Asian options
(pages 278 and 320) or the Barrier option (page 299).

In this thesis we will focus on European options (with maturity T ), which will be de�ned
by a nonnegative F̃T -measurable random variable h. The �ltration (F̃t) will be speci�ed
later (see De�nition 1.47). One can think of h(ω) as the payo� of the option h in the
scenario ω. Each ω ∈ Ω determines the path (Pt(ω))t≥0, and based on this path the
payo� h(ω) can be computed.

Note that the European call and put option both use only the �nal value PT of the
asset and do not need the values {Pt | 0 ≤ t < T}. Options like this are called Vanilla
options. Options where the payo� depends on the path {Pt | 0 ≤ t < T} of the asset
are called Exotic options. (see Shreve [17, Page 229]). We will work with the exotic
Barrier option in section 2.1.

We call an option h replicable (or attainable) if there exists a trading strategy (Ht)t≥0

such that

h = (H · P )T =

∫ T

0

Ht dPt

If H attains h, i.e if H satis�es the equation above, we call H a hedging strategy,
replicating strategy or attaining strategy for the option h. Loosely speaking, buy-
ing this replicating portfolio (i.e using the hedging strategy) or buying the option h
should not make a di�erence. Markets where every option is attainable are called com-
plete . Note that, as H is previsible, the process (H · P )t = Ht · Pt is a continuous
martingale. The following term will be important in the last chapter:

De�nition 1.39.
We call H a subreplicating strategy for h if we have

h ≤ (H · P )T =

∫ T

0

Ht dPt.
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Remark 1.40.
Not every trading strategy H can be a hedging strategy. Later we will de�ne the class
of admissible strategies, which determines some properties we need for H (see De�nition
1.48).

1.6.2 Pricing Options: An Intuitive Approach

In this section we follow an intuitive approach for �nding a fair price of a call option. We
will introduce a very simple model and exploit that pricing options is a very complicated
matter, which does (at least at �rst) not agree with ones intuition. We will follow
Delbaen & Schachermayer [4, Chapter 1].

Let us postulate the simple model we just mentioned. Suppose the price of the risky
asset P (which we will model in discrete time) depends on a fair coin (i.e. P(Heads) =
P(Tails) = 1

2
), and suppose P0 = 1:

P1(ω) =

{
2 . . . ω = Heads
1
2

. . . ω = Tails

From now on we will write H and T instead of Heads and Tails.

There is also the possibility to invest in a riskless asset B, which is mostly called bond or
numéraire. One can think of this as putting money on a bank account. For simplicity, we
assume the interest rate to be 0 and the price of one unit to be 1, i.e B0 = B1 = 1.

Let C = (P1 − 1)+ be the call option with strike price K = 1 and maturity T = 1 as
we introduced in section 1.6.1. The �rst idea for pricing this call would probably be to
compute the expectation of C, i.e to ask the following question:

What do we expect C to be worth at time 1?

So let us anwer:

EP(C) = 1 · P(H) + 0 · P(T ) = 1

2

Now suppose we do the following:

Step 1: At time 0 we buy 2
3
units of the risky asset at cost 2

3
· P0.

Step 2: At time 0 we borrow 1
3
units of the bond, which has a negative cost of −1

3
.

In total we hold a portfolio (where we denote the value by Π) consisting of 2
3
of the risky

asset and the obligation to return 1
3
units of the bond at time t = 1. Acquiring this

portfolio costs 2
3
P0 − 1

3
B0 =

1
3
because we chose P0 = B0 = 1 at the beginning.
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This portfolio replicates the call option C because the value Π satis�es:

Π(H) =
2

3
·
=P1(H)︷︸︸︷

2︸ ︷︷ ︸
value of what we own

− 1

3
·
=B1(H)︷︸︸︷

1︸ ︷︷ ︸
value of what we need to return

= 1 = C(H)

Π(T ) =
2

3
·

=P1(T )︷︸︸︷
1

2︸ ︷︷ ︸
value of what we own

− 1

3
·
=B1(H)︷︸︸︷

1︸ ︷︷ ︸
value of what we need to return

= 0 = C(T )

Step 3: We sell the call option C at time 0 at price 1
2
. It is not necessary to own the

risky asset at the time we sell the call option. If the buyer wants to buy one unit of the
stock at price K = 1 from us at time 1 (which is his right), we can still buy the stock at
time 1.

By now we spent 1
3
acquiring the portfolio with value Π and got 1

2
by selling C, which

yields a pro�t of 1
6
.

Step 4: In the case of Heads we have to buy 1 unit of the stock (at price P1 = 2) and
sell it to our buyer for K = 1, which yields a loss of C(H) = 1. Fortunately, our portfolio
yields a pro�t of Π(H) = 1 = C(H), which compensates our loss from the Call.
In the case of Tails the buyer of the call will not use his right to buy one unit of stock
from us at price 1, as the current stock price would be P1 =

1
2
. Our portfolio yields no

cost and no pro�t in this case.

To summarize this: In any case, this strategy yields a total pro�t of 1
6
. Therefore, selling

the Call at price 1
2
raises the possibility to gain pro�t without taking any risk. By �rst

selling the call one could also avoid making an initial investment.

Opportunities like this are called arbitrage opportunities. We will specify this important
term later (see De�nition 1.53).

In a reasonable market, there cannot be any arbitrage opportunity. That is why the call
option in this section needs to be sold at price 1

3
. In the next section (1.6.3) the reader

will notice that the original idea of using expectation to compute the price was not bad
at all. Our mistake was that we used the wrong probability measure.

Remark 1.41.
Holding a negative amount of a stock or the bond (which in real world means borrowing
and returning later) is called going short. Investing a positive amount money is � on the
contrary � called going long.
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1.6.3 Risk�Neutral Pricing

A very important question in mathematical �nance is how much a given option costs.
In this section, we explain the idea of risk neutral pricing and introduce Girsanov's
Theorem. The guideline will be Shreve [17, Section 1.6, Section 5.2].

To get some intuition, one could think of the space Ω as a collection of possible scenarios
in our market. There is no way of knowing the exact probabilities of every scenario,
therefore our probability measure P (which maybe comes from empirical data) is neither
very reliable, nor is it convenient when it comes to computations. We call computations
done with measure P real world computations.

For purposes like pricing options, we use a di�erent concept: As we explained earlier in
section 1.5, we reassign our probabilities with help of a (very cleverly chosen) function
Z, to get a so called Risk Neutral Measure Q. The rigorous and detailed construction of
this measure will be provided by Girsanov's theorem. We call computations done with
measure Q risk neutral computations.

An important requirement for our choice of Q is to be equivalent to P: Scenarios that
are impossible according to the real world measure P have to be impossible in the risk
neutral world as well and vice versa.

Of course, this concept might raise the question whether the risk neutral computations
really apply in the real world. For instance, the risk neutral price of an option might
not be appropriate in the real world. We answer this question like Shreve[17, Page 35]
on page 35: There is only one world. Reassigning the probabilities does not change our
view of the market, and hedges which work with measure P a.s also work with measure
Q a.s. Further, remember that in the real world there is no way of knowing the exact
probabilities anyway: So who is to decide which prices are appropriate?

We already mentioned that we need to choose the reassigning function in a clever way.
To do this, we need to respect the so called market price of risk (θt)t≥0, which will
be speci�ed later.

Theorem 1.42 (Girsanov, [17], Page 212).
Let (Wt) be a Brownian motion on (Ω,F ,P), and let Ft be a �ltration for this Brownian
motion. Let (θt) be an adapted process. De�ne

Zt := e−
∫ t
0 θu dWu − 1

2

∫ t
0 θ2u du

and let

Q(A) :=

∫
A

ZT dP.

Under the assumption

E
(∫ T

0

θ2uZ
2
u du

)
<∞,
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the stochastic process (W̃t) de�ned by

W̃t := Wt +

∫ t

0

θu du

is a Brownian motion with respect to Q.

Important for the proof of this theorem is the fact that the process (Zt) is a martingale
with respect to P, which can be shown with help of Itô's formula and a little knowledge
of stochastic integrals. Further, note that E(ZT ) = 1, and therefore Q is a probability
measure by Radon-Nikodym (see Theorem 1.37).

Of course, the question how to choose (θt) and why this choice justi�es the name risk
neutral is still open. A general answer is beyond the scope of this thesis, and interested
readers will �nd their answer in Shreve [17]. We will only specify the market price of
risk for the Black�Scholes model. The name risk-neutral will also be explained when we
use the concept of risk-neutral pricing in the Black-Scholes Model in section 1.6.4.

1.6.4 The Black�Scholes Model

Let (Wt) be a Brownian motion, and let µ, σ and r > 0 be real valued constants. The
Black�Scholes model simulates the prices of one risky asset with price Pt and one non-
risky asset P 0

t , which we will call numeraire. We assume the stock prices satisfy the
following equations:

dPt = µ · Pt dt+ σ · Pt dWt

dP 0
t = r · Pt dt,

Note that in the case µ = 0 the process Pt is a martingale since the underlying equation
yields

Pt = P0 + σ ·
∫ t

0

Pu dWu,

and the stochastic integral (P ·W )t is a martingale. Therefore, µ = 0 means we expect
stagnation of the price, µ > 0 means we expect increasing prices and µ < 0 means we
expect decreasing prices. We call µ drift. One can think of σ as an index of how much
Pt depends on randomness, since it controls how much changes of Brownian motion
a�ect the stock price. We call σ volatility. The constant r > 0 controls the growth of
the numeraire asset P 0

t . We can think of the numeraire as a bank account with �xed
interest rate r.

From now on we assume P 0
0 = 1. With help of Itô's formula we showed in Example 1.32
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that the equations above are solved by:

P 0
t = P 0

0︸︷︷︸
=1

·er·t

Pt = P0 · e(µ−
σ2

2
)·t+σ·Wt

One can think of the numeraire asset as money on a bank account, which grows by a
constant interest rate r.

The value of our portfolio, i.e of our collection of stock, is given by

Vt := H0
t P

0
t +HtPt.

The intuition behind the value is the following: If you want to �nd out how much your
portfolio is worth, you have to multiply the amount of each asset you own with its
current price and add up.

To understand the following part better, let us make a little excursion to discrete time
models. Here it seems reasonable that the value V satis�es

Vn+1 − Vn = H0
n+1 ·

(
P 0
n+1 − P 0

n

)︸ ︷︷ ︸
P 0
n ·(er−1)

+ Hn+1 ·
(
Pn+1 − Pn

)︸ ︷︷ ︸
risky part

,

The value of the risky part of the portfolio increases from day n to day n + 1 by the
amount the price P increases multiplied by the amount Hn+1 of the asset the owner holds
in this period. This equation holds provided that the owner does not use any money
from outside the portfolio to buy more of the risky asset or sells a part of his portfolio.
If this is the case, the value V can not be described by the equation above.

Note that this approach gives us the formula

Vn = V0 +
n−1∑
k=0

H0
k+1 ·

(
P 0
k+1 − P 0

k

)
+

n−1∑
k=0

Hk+1 ·
(
Pk+1 − Pk

)
,

and that we still have that

Vn = H0
n · P 0

n +Hn · Pn.

To extend this to the continuous setting, we need the following de�nition:

De�nition 1.43 ([9] de�nition 4.1.1).
A self-�nancing strategy is a pair (H0, H) of previsible processes (H0

t ), (H)t satisfying∫ T

0

|H0
t |dt +

∫ T

0

H2
t dt <∞ a.s
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and

H0
t P

0
t +HtPt︸ ︷︷ ︸
Vt

= H0
0P

0
0 +H0P0︸ ︷︷ ︸
V0

+

∫ T

0

H0
u dPu +

∫ t

0

Hu dPu

for all t ∈ [0, T ].

Loosely speaking, we call a strategy self-�nancing, if every change of the value of our
portfolio comes from the stock market and not from an external source. Note that the
second condition of the de�nition above can be written as

dVt = H0
t dP

0
t + HtdPt.

We also introduce the discounted value:

Ṽt = e−rt · Vt = H0
t +Ht · e−rt · Pt︸ ︷︷ ︸

St

Remember that the process St = e−rt · Pt is called the discounted stock price.

Lemma 1.44 ([9], Lemma 4.1.2).
Let (H0, H) be a pair of trading strategies such that∫ T

0

|H0
t |dt +

∫ T

0

H2
t dt <∞ a.s

is satis�ed. Then, (H0, H) is self-�nancing if and only if

dṼt = HtdSt

Proof.
Assume that (H0, H) is self-�nancing. First note that by an application of Itô's formula
(1.35) we get for St = e−rtPt:

dSt = −r · e−rt · Pt︸ ︷︷ ︸
St

dt + e−rt dPt

The same formula also yields:

dṼt = d(e−rt · Vt) = −r · e−rt dt · Vt + e−rtdVt
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Note that, as (e−rt) does not depend on randomness, the covariation of e−rt and Vt and
the covariation of ert and Pt both are zero. As our strategy is self-�nancing, we know

dVt = H0
t dP

0
t + HtdPt.

Therefore:

dṼt = −re−rt
(
H0

t · ert +HtPt

)
dt + e−rt ·

(
H0

t dP
0
t + HtdPt

)
Using dP 0

t = −r · ertdt and St = e−rtPt we get

dṼt = −r ·HtSt dt+Hte
−rtdPt = Ht ·

(
−r · St dt + e−rtdPt︸ ︷︷ ︸

dSt

)

Now suppose dṼt = Ht dSt holds. The same computations show

dVt = H0
t dP

0
t + HtdPt,

hence (H0, H) has to be self-�nancing.

In section 1.6.3 we explained the concept of risk-neutral pricing and introduced Gir-
sanov's Theorem (see Theorem 1.42). Now we show how to �nd a risk�neutral measure
Q in the Black�Scholes Model and how to use it to compute prices of options. One �nds
this in Lamberton [9, Page 92].

Lemma 1.45.
De�ne θ := µ−r

σ
, let Zt := e−θ Wt− 1

2
θ2 be a stochastic process and let Wt be a Brownian

motion, both de�ned on (Ω,F ,P). Let (F̃t) be the natural �ltration ofW (see De�nition
5.6).

Q(A) :=

∫
A

ZT dP.

Then the process (W̃t) de�ned by W̃t = Wt+θ ·t is a Brownian motion on (Ω,F , (F̃t),Q)
and we have

dSt = σ · St dW̃t.
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Proof.
First, we use 1.35 and remember dPt = Pt · (µ dt+ σ dWt) to compute

dSt = −r · e−rt Pt dt + e−rt dPt

= −r · e−rt Pt︸ ︷︷ ︸
St

dt + e−rt Pt︸ ︷︷ ︸
St

·(µ dt+ σ dWt)

= St ·
(
(µ− σ) dt+ σ dWt

)
The assumption of Girsanov's Theorem (1.42) is satis�ed as Z is a martingale by Ex-
ample 1.33 and θt = θ is constant. So we may apply (1.42) which yields that

W̃t := Wt +

∫ t

0

θ dt = Wt +
µ− r

σ
· t

is a Brownian motion w.r.t Q. Now note that

σ · dW̃t = σ
(
dWt +

µ− r

σ
dt
)
= (µ− r) dt+ σ dWt

and conclude

dSt = σSt dW̃t

Remark 1.46.
The version of Girsanov's Theorem (see Theorem 1.42) in this thesis does not specify
the �ltration which underlies the Brownian motion W̃t. To complete the proof above
it is important that W̃t is de�ned on the probability space (Ω,F , (F̃t),Q), where F̃t is
the natural �ltration of W . This can be justi�ed with help of Lamberton [9, Theorem
4.2.2], which is a di�erent formulation of Girsanov specifying the �ltration. The un-
derlying �ltration is important for our use of Martingale Representation Theorem (see
Theorem 5.7) in the next proof.

Let us summarize this: If we de�ne Q as in Girsanov (1.42), we get

St = σ

∫ t

0

Su dW̃u.

Therefore, the discounted stock price S is a martingale with respect to the measure
Q. Loosely speaking, the risk of S decreasing is the same as the risk of S increasing
(with respect to Q), which is the reason why we call Q the risk-neutral measure. So we

40



answered not only the question of how the risk�neutral measure can be found, but also
the question of why we call it risk-neutral. The question of how to use the risk-neutral
measure to compute prices for options is still open.

First, we need formal de�nitions of the terms option and replicable. We �nd them in
Lamberton [9, Page 92]. Again, we focus on European Options:

De�nition 1.47.
A european option is a nonnegative random variable h ∈ L2(F̃T ,Q).

De�nition 1.48.
We call a trading strategy (H0, H) admissible, if it is self-�nancing and if the discounted
value Ṽt = H0

t +HtSt of the corresponding portfolio satis�es

sup
t∈[0,T ]

Ṽt ∈ L2(F̃T ,Q).

De�nition 1.49.
We call an option h replicable (or attainable), if there exists an admissible strategy
(H0, H) such that

h = VT .

In this case, the strategy (H0, H) is called replicating strategy, attaining strategy
or hedging strategy.

Loosely speaking, the payo� of the option h has to be equal to the �nal value of the
replicating portfolio.

In the following theorem the process (Wt) is a Brownian motion de�ned on a probability
space, and (Ft) denotes its natural �ltration (see De�nition 5.6).

Theorem 1.50 ([9], Theorem 4.3.2, Page 92).
In the Black�Scholes model, every option h = FT ∈ L2(Q) is replicable and the value
process of the replicating portfolio satis�es

Vt = EQ
(
e−r(T−t) · h | Ft

)
.

Proof.
First assume that there is an admissible strategy (H0, H) replicating h. The value of
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the replicating portfolio is

Vt = H0
t P

0
t +HtPt,

and the discounted value is given by

Ṽt = H0
t +HtSt.

By de�nition 1.49 we have h = VT .

As our strategy is self-�nancing, lemma 1.44 yields dṼt = HtSt, and Lemma 1.45 tells
us dSt = σ · St dW̃t:

Ṽt = Ṽ0 +

∫ t

0

Hu dSu = Ṽ0 +

∫ t

0

HuσSu dW̃u.

By our assumptions on H (see De�nition 1.48), the discounted value process Ṽt is a
martingale relative to the �ltration (F̃t) and the measure Q (which is the underlying
model for the Brownian motion (W̃t). Therefore, Ṽt satis�es for all 0 ≤ s ≤ t:

EQ(Ṽt | F̃s) = Ṽs,

hence

EQ(ṼT | F̃t) = Ṽt

and

Vt = ertṼt = ert · EQ(e
−rT VT︸︷︷︸

h

| F̃t) = EQ(e
−r(T−t) · h | F̃t)

Our goal now is to construct an admissible strategy (H0, H) which replicates h. We just
showed that H0 and H need to satisfy

H0
t P

0
t +HtPt = Vt = EQ

(
e−r(T−t)h | Ft

)
.

Note that Mt := EQ
(
e−rTh | Ft

)
is a martingale by iterated conditioning (see Example

1.7), which satis�es Mt ∈ L2 by de�nition of h (see De�nition 1.47). Therefore, by
martingale representation theorem (see Theorem 5.7), we can �nd a previsible process
(Kt) such that

EQ[e
−rTh | Ft]︸ ︷︷ ︸
Mt

= EQ[e
−rTh]︸ ︷︷ ︸

M0

+

∫ t

0

Ks dW̃t,

where we choose W̃t = Wt +
µ−r
σ

· t as in 1.45. Note that this equation implies

dMt = Kt dW̃t.
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Now de�ne

Ht :=
Kt

σ · St

and H0
t :=Mt −HtSt.

Then we get Mt = H0
t +HtSt (which tells us M is the discounted value of the portfolio

relative to this strategy) and

dMt = Kt dW̃t = Ht · σ · StdW̃t
1.45
= Ht dSt

So by 1.44 the strategy (H0, H) is self-�nancing with discounted value Ṽt = Mt ∈
L2(F̃T ,Q), and supt∈[0,T ] Ṽt = supt∈[0,T ] EQ

(
e−rTh | Ft

)
is square integrable (see Remark

1.51), hence (H0, H) is admissible.

Remark 1.51.
Note that to �nish the proof of 1.50 we need that supt∈[0,T ] Ṽt = supt∈[0,T ] EQ

(
e−rTh | Ft

)
is square integrable. This can easily be shown with help of Doob's Lp-inequality (see
Theorem 5.10). To apply this result, one needs to remember that by example 1.7 we

know that

(
EQ

(
e−rTh | Ft

))
t≥0

de�nes a martingale.

Remark 1.52.
In the proof of 1.50 we showed that the option h already determines the value process
(Vt) of any self-�nancing strategy (H0, H). So given a strategy (Ht) of the risky asset
we can always de�ne H0

t := Vt −HtPt to get a self-�nancing strategy (H0, H).

1.6.5 Arbitrage

Last but not least we introduce a formal de�nition of arbitrage (which we already mo-
tivated in section 1.6.2) and formulate the Fundamental Theorems of Asset Pricing
(FTAP). We use Shreve [17, Pages 230-232] to do so.

In this section we always work with the market model (Ω,F , (Ft),P, (St)).

De�nition 1.53.
We call a portfolio with value process V (t) an arbitrage opportunity, if it satis�es
V (0) = 0 and for some time T > 0 we have

P(V (T ) ≥ 0) = 1

P(V (T ) > 0) > 0.
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If there exists an arbitrage opportunity, we say that the market model (Ω,F , (Ft),P, (St))
admits arbitrage.

So an arbitrage opportunity can be interpreted as a strategy starting with zero capital
where one does not lose money almost surely (=no risk) and still has positive probability
of making pro�t.

Theorem 1.54 (FTAP1).
If a market model has an equivalent martingale measure, then it does not admit arbi-
trage.

Note that the existence of the risk�neutral measure Q implied by Girsanov in the Black-
Scholes Model immediately implies that the Black�Scholes Model does not admit arbi-
trage. Recall the de�nition of completeness on page 32.

Theorem 1.55 (FTAP2).
Consider a market model that has an equivalent martingale measure. The market model
is complete if and only if this equivalent martingale measure is unique.

Note that in Theorem 1.50 we showed that in the Black�Scholes Model every option
is replicable, and therefore the Black-Scholes Model is complete. From FTAP 2 we
can deduce that the risk�neutral measure Q has to be the only equivalent martingale
measure in the Black�Scholes Model.

The reader may read Shreve [17, Pages 230-232] for the proofs. A detailed set up of
the theory of arbitrage can be found in Delbaen & Schachermayer [4], who also
provide lots of formulations of the FTAP's and explain them properly.

In this thesis (and in general literature) it is always reasonable to assume a market
model does not admit arbitrage. We will use this later to determine bounds for certain
options, when we show that any lower price would lead to the existence of an arbitrage
opportunity. We are going to call this assumption the no-arbitrage-condition. .

This condition determines the price for any replicable option: If the price di�ers from
the price of the replicating portfolio (i.e V0), there is arbitrage (for example see Section
1.6.2).

From Theorem 1.50 we directly deduce:

Corollary 1.56.
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In the Black�Scholes Model, the price of an option h is given by

EQ(e
−r·T · h).

The procedure of generating an arbitrage strategy if the option has the wrong price has
already been introduced in section 1.6.2.

1.6.6 The Classical Approach: A Short Summary

The procedure from the previous section does not only work in the Black-Scholes model,
but in every complete (see Page 32) market. We use Hobson [7, Section 2.1] for a short
summary.
First we postulate a model (maybe depending on parameters) for the stock price process
(Pt)t≥0 de�ned on some �ltered probability space. Then we compute the price of the
option FT as the discounted expectation (with respect to the unique risk�neutral measure
Q) of the �nal outcome:

C = EQ
[
e−rTFT ]

If the price C depends on parameters such as the strike price and the maturity (which
is the case for put or call), we mostly use the notation C(K,T ). In the Black-Scholes
model, where drift µ, volatility σ, interest rate r and start price P0 also play a role we
use

C(K,T, P0, r, µ, σ, r)

If the market is complete, this pricing procedure can be justi�ed by

e−rTFT = EQ
[
e−rTFT ] +

∫ T

0

Ht dSt,

where H is a self-�nancing hedging strategy.
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2 Hedging and Pricing without a concrete Stochastic

Model

2.1 A Motivating Example

In the following section we will try to get information about the price of an option
without using any information about an underlying stochastic model. We use Hobson
[7, Chapter 1] as a guideline.

Our goal is to �nd a model-independent bound for the price of the digital option with
maturity T :

F =

{
1 max0≤t≤T Pt ≥ B

0 otherwise
,

where B ∈ R is called Barrier.

The owner of this option receives a payment of 1 if the (undiscounted) stock price P
reaches the barrier B before maturity time T . Of course this option only makes sense if
we assume that the initial stock price P0 is smaller then the barrier B.

Note that we can � instead of this notation above with two cases � also use the nota-
tion

F = 1{HB≤T}

HB = inf{u > 0 | Pu ≥ B}.

The key observation to reach our goal in this section is the following Lemma:

Lemma 2.1.
For all K < B holds:

1{HB≤T} ≤
(PT −K)+

B −K
+

(PHB
− PT )

B −K
· 1{HB≤T}

Proof.
If the price (Pt) does not hit the barrier before time T , the inequality is trivially true
as the left side is zero in that case and on the right side only the nonnegative term is
remaining. If the price does hit the barrier, we get

1 ≤ (PT −K)+ + B − PT

B −K
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If PT > K we have

(PT −K)+ + B − PT

B −K
≥ PT −K + B − PT

B −K
= 1,

and if PT < K we have

(PT −K)+ + B − PT

B −K
=
B − PT

B −K
≥ B −K

B −K
= 1.

This inequality shows us that the payo� of our digital option is always smaller or equal
then the sum of the payo�s of...

� ... 1
B−K

call options with strike K and...

� ... 1
B−K

of a more complicated exotic option where the owner gets the di�erence of
the barrier and the �nal stock price at time T (which can be negative).

We can use the no-arbitrage-condition (see Page 44) to show that this super-replicating
strategy determines an upper bound for the price P(F ) of our digital option for any
choice of K < B:

Theorem 2.2.
Let C(K) denote the price of the call option (PT −K)+ and let K < B. Then the price
P(F ) of our digital option satis�es

P(F ) ≤ inf
K<B

C(K)

B −K
:= D.

Proof.
Suppose the statement is not true. So there exists K < B such that P(F ) > C(K)

B−K
. Then

with the following strategy we could generate unlimited pro�t:

1. Let L > 0. First, we buy L times the option (PHB
− PT ) · F . Note that the owner

of this option only bene�ts if the price process P hits the barrier before time T ,
and decreases again such that PHB

> PT . Therefore, this option has negative
expectation (w.r.t any measure under which P is a martingale), hence the price is
0.

2. Then we buy L times the call option (PT −K)+, which costs us L · C(K).

3. We sell L·(B−K) times the option F at a (total) price L·(B−K)P(F ) > L·C(K).
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4. By our original assumption we made more money selling F that we spent on buying
the call option. In the case HB ≤ T we have to pay L · (B −K) to the buyer of F
(from step 3).

5. The options we own will get us more money than what we will have to pay the
buyer from step 3 by Lemma 2.1:

L · (B −K) · F︸ ︷︷ ︸
what the buyer gets from us

≤ L · (PT −K)+ + L · (PHB
− PT ) · F︸ ︷︷ ︸

what we own

After all, we made pro�t without taking any risk, and by increasing L we can increase
the pro�t. Therefore, the assumption we made in the beginning leads to arbitrage, and
the statement from the theorem has to hold.

Note that to derive this bound we did not make any assumptions on the stochastic model.
Nevertheless, we successfully showed that under any riskless measure the discounted
expected payo� of the option will be less than D. This is true because once we �xed
such a measure, the price of F is the expected outcome under this measure.

Readers who are interested in why this bound can not be re�ned and therefore this is
optimal are welcome to read chapter 2.7 of Hobson [7].
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2.2 Breeden and Litzenberger

In this section we assume that we know prices C(K) of liquidly (=very often, on a regular
basis) traded call options for any strike price K and for a �xed maturity T . Hence we
can de�ne a function K 7→ C(K) assigning every strike price K the corresponding call
price C(K). Note that since maturity T is �xed there is no need to treat C as a function
depending on T and write C(K,T ).
The main reference for this section is Hobson [7, Chapter 2.3]. From there we take
that the no-arbitrage condition forces our function C to be decreasing and convex (as a
function of the strike price K).

Figure 1: This �gure shows a possible graph of C and compares it with the (dashed)
graph of K 7→ (P0 −K · e−rT )+.

The theorem of Breeden and Litzenberger shows how we can use a function like this to
construct a measure Q, i.e to construct a stochastic model for our stock price just by
using the prices of call option we can observe.

We formulate and prove the following theorem with stronger assumptions than Hobson
[7] does. Readers who are interested in the stronger result and its proof may read the
original paper Breeden & Litzenberger [2].

Theorem 2.3 (Breeden and Litzenberger, see [7], Lemma 2.2).
Fix a maturity T ∈ (0,∞) and suppose we know call prices for all strikes K, i.e we
can assigne the price of the call option C(K) to every strike price K with a function
K 7→ C(K). Suppose the function C(K) is two times continuously di�erentiable. Then,
assuming the call prices C(K) are calculated as the discounted payo� under a measure
Q, i.e

C(K) = EQ
[
e−rT · (PT −K)+

]
,

we have that

Q(PT > K) = −erTC ′(K)
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and

Q(PT ∈ dK) = erT · C ′′(K).

Here, dK means an in�netesimal small intervall on R. This notation becomes clear in
the proof. We will prove this result under the assumption that PT has a density

f(K) :=
d

dK
Q(PT ≤ K),

which is continuous but does not have to be di�erentiable again.

Loosely speaking, the theorem of Breeden�Litzenberger gives us a possibility to con-
struct a stochastic model (i.e a measure Q) under which the observed call prices C(K)
occur.

In the proof we use some theory of sequences of functions (see Theorem 5.9) and Leibniz'
rule for di�erentiating integrals (see Theorem 5.8), which is needed because the boundary
of the integral depends on the di�erentiating variable K. Both can be found in the
appendix.

Proof.
So let f be the density of PT under Q. Then:

C(K) = EQ
[
e−rT · (PT −K)+

]
= e−rT ·

∫
R
(x−K)+ · f(x)dx = e−rT ·

∫ ∞

K

(x−K) · f(x)dx

To di�erentiate this term, de�ne

Hn(K) :=

∫ n

K

(x−K) · f(x) dx

H(K) :=

∫ ∞

K

(x−K) · f(x)dx

The sequence Hn converges pointwise against H, because for �xed K and for every ε > 0
we can choose n large enough such that∣∣H(K)−Hn(K)

∣∣ = ∣∣∣∣∫ ∞

n

(x−K) · f(x) dx
∣∣∣∣ < ε

To justify this, it is necessary to observe that for n > K we have that∫ ∞

n

(x−K) · f(x)︸ ︷︷ ︸
≥0

dx ≤
∫ ∞

K

(x−K) · f(x)︸ ︷︷ ︸
≥0

dx = C(K) <∞
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The function Hn(K) is di�erentiable by Leibniz' Rule (see Theorem 5.8), and as f is a
continuous density function, the derivative is continuous (w.r.t K):

d

dK

∫ n

K

(x−K) · f(x) dx = −
∫ n

K

f(x) dx

Last but not least we need to observe that the sequenceH ′
n(K) = −

∫ n

K
f(x) dx converges

uniformly to −
∫∞
K
f(x) dx. This is true because for any ε > 0 we can choose n large

enough such that∣∣H ′
n(K) +

∫ ∞

K

f(x) dx
∣∣ = ∣∣∣∣−∫ n

K

f(x)dx+

∫ ∞

K

f(x) dx

∣∣∣∣ = ∣∣∣∣∫ ∞

n

f(x) dx

∣∣∣∣ < ε,

and the choice of n can be made independently of K. Then by 5.9 we have that H(K)
is di�erentiable and

H ′(K) = −
∫ ∞

K

f(x) dx.

In total we have

C ′(K) = e−rTH ′(K) = −e−rT

∫ ∞

K

f(x) dx = −e−rTQ(PT > K).

Now let us turn to the second claim. Instead of dK we work with the interval [K,K+δ],
where we choose δ > 0 to be small:

Q(PT ∈ [K,K + δ]) = Q(PT > K)−Q(PT > K + δ) = erT [C ′(K) + δ)− C(K)]

= erT ·
∫ K+δ

K

C ′′(z)dz

This equality is a good way to understand the second claim of the theorem, and in the
limiting case δ → 0 we get

Q(PT ∈ dK) = erT · C ′′(K)

Remark 2.4.
Note that lemma 5.9 works only for functions de�ned on a closed interval [a, b], and we
apply it to functions Hn(K) de�ned on [0,∞]. So for our proof to work, we have to
restrict ourselves to the case where we have a maximal strike price K0. This seems like
a hard restriction in theory, but it de�nitely is no problem in reality.
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2.3 Candidate Price Processes

In the last chapter we already saw a possibility to construct the distribution of PT just
by using call prices. But we are still far away from a rigorous stochastic model. Our
main problem is that, even though we know the distribution of the (undiscounted) price
P at time T , we have no idea how the stock prices behaves at other times.

Let us rephrase this: Once we have a distribution for PT , we can easily determine
a distribution µ for the discounted price ST . The process (St), which needs to be
a martingale in any market model. But there could be many martingales satisfying
MT ∼ µ.

Given a distribution µ on R and a maturity time T we call a martingale M such that
MT ∼ µ a candidate price process (see Hobson [7, Page 1]).

Example 2.5.
Let us �x µ ∼ N (0, σ) and let (Wt)t≥0 be a Brownian motion. Since Wt ∼ N (0, t) we
scale by

√
σ
T
to get distribution µ at time T . Therefore, M1

t :=
√

σ
T
·Wt is a candidate

price process. To construct a second process, let h : [0, T ] → [0, T ], h(t) = t2

T
. Note that

h is strictly increasing and satis�es h(T ) = T . We can observe that M2
t :=

√
σ
T
·Wh(t)

is a martingale with respect to the �ltration (Fh(t))t≥0:

E(M2
t | Fh(s)) = E(

√
σ

T
·Wh(t) | Fh(s)) =

√
σ

T
·Wh(s) =M2

s

Further, note that M2
T =

√
σ
T
·Wh(T ) =

√
σ
T
·WT ∼ µ.

In the following �gure you can see two simulations of both candidate price processes
for maturity time T and variance σ = 0.5. Note that both processes coincide on time
T by construction. Moreover, you can observe that process M2 �uctuates less at the
beginning, as h(t) grows less slowly than identity for small t.
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So by using tricks from stochastic analysis we were able to �nd a nontrivial candidate
price process for a �xed probability measure. But how does this work in general? How
can we �nd interesting candidate price processes?

To investigate these questions, and to develop some theory to describe candidate price
processes, we will use the connection to the Skorokhod Embedding Problem (SEP). As
this is the main component of this thesis, we will have a whole chapter to discuss how
the theory behind the SEP relates to candidate price processes, and to look at some
approaches to solve this problem.
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3 The Skorokhod embedding problem

The Skorokhold embedding problem (SEP) as introduced in Hobson [7, Chapter 3] is:
Given a stochastic process (Xt)t≥0 with state space I on a �ltered probability space
(Ω,F , (Ft)t≥0,P), and a measure µ, �nd a stopping time τ such that the law of Xτ is µ.
We call the problem in this setting the SEP for (X,µ) and we will call τ a solution.

In this thesis, we will (like Hobson [7] does as well) restrict ourselves to the case where
X = W is a Brownian motion on R and µ is a centered probability measure on R,
i.e ∫

R
x dµ(x) = 0

We will refer to this restricted setting as the classical version of the SEP. Note that
the SEP for (W,µ) has only non-integrable solutions anyway if µ is not centered, as
Wald (see Lemma 1.12) states that for any integrable stopping time τ we would have
E(Wτ ) = 0.

Let us take a look at example from Mörters & Peres [11, Section 5.3]:

Example 3.1.
Let (Wt) be a Brownian motion and let −a < 0 < b. Let µ be such that µ({−a}) = b

a+b

and µ({b}) = a
a+b

. We showed in 1.10 that if you choose τa := inf{t > 0 | Wt = −a},
τb := inf{t > 0 | Wt = −b} and T := τa ∧ τb we have

WT ∼ µ.

Hence T is a solution for the SEP for (W,µ) and, as we have E(T ) = a · b (see Example
1.11), it is an integrable solution.

It makes sense to look for the �rst time the Brownian motion has marginal distribution
µ:

De�nition 3.2.
Let σ and τ be two stopping times for the stochastic process X. We call τ minimal, if
σ ≤ τ and Xσ ∼ Xτ implies σ = τ a.s.

If µ is centered and τ is a minimal solution for the SEP for (W,µ), we write τ ∈ T (µ).

55



3.1 The SEP and Candidate Price Processes

In this section we explain how the SEP relates to the pricing problem we discussed so
far. But �rst, let's do a quick recapitulation:

Assume we know all call prices for a �xed maturity T . Then by the Theorem of Breeden
and Litzenberger (2.3), we can �nd �nd the distribution of the �nal stock price PT . But
as we showed in the last section, it is still unclear how the stock price (Pt) behaves
between starting time 0 and maturity time T .

The problem was, given the desired distribution µ of ST , there might be many martin-
gales (Mt) satisfying MT ∼ µ.

The key result to characterize this class of martingales is the theorem of Dambis-Dubin-
Schwarz (see Revuz & Yor [13, Chapter V, Theorem 1.6, Page 181]):

Theorem 3.3 (Dambis-Dubin-Schwarz).
Let M be a continuous local martingale with respect to the �ltration Ft, vanishing at 0
such that [M ]∞ = ∞, and de�ne

τs := inf{t > 0 : [M ]t > s}.

Then the process Ws :=Mτs is an Fτs -Brownian motion and

Mt = W[M ]t

Loosely speaking, the theorem of Dambis-Dubin-Schwarz tells us that martingales sat-
isfying certain assumptions become a Brownian motion after a time change. So let us
use this theory to develop an approach to �nd candidate price processes. We will use
the idea of Hobson [7, Section 3.6]. In the following, we will always assume that µ is
centered.

Let (Mt) be a continuous martingale with M0 = 0 such that MT ∼ µ. Then by Dambis-
Dubin-Schwarz we can write (Mt) as time-changed Brownian motion

Mt := W[M ]t ,

and τ := [M ]T is a solution for the SEP for (W,µ) because W[M ]T = MT ∼ µ by
construction.

On the other hand, if τ ∈ T (µ), then

Mt := W t
T−t

∧τ

is a martingale with MT ∼ µ. To see this, note that t
T−t

→ ∞ for t → T such that

τ ≤ t
T−t

eventually. To show that M indeed is a martingale, one can use the same

technique as in Example 2.5 with h(t) = t
T−t

.
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After all we can obvserve that there is a 1-1 correspondence between candidate price
processes and solutions of the SEP, and therefore it is useful to investigate the SEP in
order to solve our pricing problem.

3.2 Doob's Approach

In this section we follow Hobson [7, Section 3.2] to understand Doob's approach for
solving the classical version of the SEP.

So let (Wt) be a Brownian motion, and let µ be a centered probability measure on R.
We want to �nd a stopping time τ such that Wτ ∼ µ.

Let Fµ be the distribution function of µ, i.e Fµ : x 7→ µ((−∞, x]). Note that W1 ∼
N (0, 1) has standard normal distribution. Let Φ be the distribution function, i.e Φ :
x 7→ P(W1 ≤ x).

We denote the generalized inverse of Fµ by F−1
µ , i.e

F−1
µ (y) := inf{x ∈ R | Fµ(x) ≥ y}

De�ne Z := F−1
µ (Φ(W1)). Then Z ∼ µ:

P(Z ≤ x) = P(F−1
µ (Φ(W1)) ≤ x) = P(Φ(W1) ≤ Fµ(x))

= P(W1 ≤ Φ−1(Fµ(x))) = Φ(Φ−1(Fµ(x))) = Fµ(x) = µ((−∞, x])

Loosely speaking, we just need to wait until (Wt) hits the value F−1
µ (Φ(W1)) = Z,

i.e

τ := inf{u ≥ 1 : Wu = F−1
µ (Φ(W1))},

to get Wτ = F−1
µ (Φ(W1)) ∼ µ. Note that at time zero Z = F−1

µ (Φ(W1)) is a ran-
dom variable, and after time 1 we know the value of Z and can treat it like any real
number.

So with the information available at time 0, we have that Wτ ∼ µ and therefore (as µ is
centered) E(Wτ ) = 0. On the other hand, once we know the value of BM at time 1, say
W1 = x, we are in a very di�erent situation.

We observe a Brownian motion starting at time 1 and at value x, i.e the process

W̃t := Wt+1 −W1,

which we know is a Brownian motion by the Markov Property.

Assume τ is integrable. Then E(W̃τ ) = 0 by Wald's Lemma (1.12). So we have
E(Wτ+1) = x. Hence for x ̸= 0, this yields that τ + 1 is not integrable (by apply-
ing Wald's Lemma to the original Brownian motion W ), which is a contradiction to the
initial assumption that τ is integrable.

To summarize this, Wald's Lemma (1.12) tells us that τ can not be an integrable solution
to the SEP if W1 ̸= 0, which happens almost surely.
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3.3 Hall's Approach

Hall's way of solving the SEP is de�nitly more complicated than Doob's, but gives us in
return a genuine solution which will be integrable. One can �nd this solution (although
not very detailed) in Hobson [7, Section 3.3].

The general idea is to construct a random interval [u, v], where u < 0, and stop when
Brownian motion leaves this interval. The key of this solution will be the way we
construct the interval.

First, we de�ne

c :=

∫ ∞

0

x dµ(x)

and note that (because µ is centered) we also have that∫ 0

−∞
|x| dµ(x) = −

∫ 0

−∞
x dµ(x) = c.

This can be interpreted as the weight the measure µ puts on each side of the vertical
axis, i.e and will be important for scaling.

Let U ∈ (−∞, 0) and V ∈ [0,∞) be two random variables with joint law

ρ(du, dv) =
|u|+ v

c
µ(du)µ(dv).

In a more precise (but less e�cient) notation ρ looks like this:

ρ([u, u+ δ), [v − ϵ, v)] =

∫ v

v−ϵ

∫ u+δ

u

|x|+ y

c
dµ(x)dµ(y).

Example 3.4.
Suppose µ is a uniform distribution on (−1, 1). For a better intuition, assume X is a
random variable with law µ, i.e X ∼ µ. Then F (x) = 1+x

2
is the distribution function,

and the density is given by f(x) = 1
2
. Now we compute:

c =

∫ ∞

0

x dµ(x) =

∫ 1

0

x dµ(x) =

∫ 1

0

x · 1
2
dx =

1

4

We used Radon-Nikodym's Theorem the same way as in Example 1.38.

The joint law can now be computed. We assume −1 < u < 0 < v < 1:
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ρ([u, u+ δ), [v − ϵ, v)) = 4 ·
∫ v

v−ϵ

∫ u+δ

u

|x|+ y dµ(x)dµ(y)

= 4 ·
∫ v

v−ϵ

∫ u+δ

u

|x| dµ(x)︸ ︷︷ ︸
− 1

4
·(δ2+2uδ)

dµ(y) + 4 ·
∫ v

v−ϵ

y

∫ u+δ

u

dµ(x)︸ ︷︷ ︸
1
2
·δ

dµ(y)

= −(δ2 + 2uδ) · δ · u ·
∫ v

v−ϵ

dµ(y)︸ ︷︷ ︸
1
2
·ϵ

+ 4 · 1
2
· δ ·

∫ v

v−ϵ

y dµ(y)︸ ︷︷ ︸
1
4
(2vϵ−ϵ2)

=
1

2
· ϵ · (−2uδ − δ2) +

1

2
· δ · (2vϵ− ϵ2)

= δ · ϵ · (|u| − 1

2
δ + v − 1

2
· ϵ)

The integral
∫ u+δ

u
|x| dµ(x) is easy to compute. We need to choose δ > 0 small enough

such that u+ δ still is negative:∫ u+δ

u

|x|︸︷︷︸
−x

dµ(x) = −
∫ u+δ

u

x · 1

2︸︷︷︸
density

dx = −1

2

(
(u+ δ)2

2
− u2

2

)
= −1

4

(
δ2 + 2uδ

)

In the notation of Hobson [7] this reads like

ρ(du, dv) = (|u|+ v) · du · dv,

where u and v are the points in the middle of the in�nitesimally small intervals du and
dv. So ρ is a measure on [0, 1]× [−1, 0] which assignes the rectangle [v− ϵ, v]× [u, u+ δ]
the measure

δ · ϵ ·
(
|u| − 1

2
δ + v − 1

2
· ϵ
)
.

Rectangles which have the same size but di�erent position get assigned a di�erent mea-
sure. In the �gure 2 one can see the rectangle [v− ϵ, v]× [u, u+ δ] and compare the two
notations. Note that usually by du and dv we mean very small intervals, but for better
visibility they are bigger in the picture.

Let us return to the general setting. Our goal now is to show that τ = τU,V is a solution
for the SEP, i.e that WτU,V

∼ µ. Here, as usual, we mean

τu,v := inf{t > 0 | Wt = u} ∧ inf{t > 0 | Wt = v}.
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Figure 2: The rectangle [v − ϵ, v]× [u, u+ δ] and compare the two notations.

Note that the complication is not the escape problem of Brownian motion, which we
already solved in the beginning of this thesis (see Example 1.10), but the fact that the
boundaries u and v depend on randomness as well, and are not known a priori.

So �x u0 < 0, and let du denote a small intervall containing u0. We are interested in
the probability that Brownian motion stops in this interval. For this we need that the
(random) boundary U is in du, and that W hits its lower boundary U �rst:

P(Wτ ∈ du) = P(U ∈ du,Wτ = U)

As we don't know the distribution of U , but only the joint law ρ, we have to bring V
into our computations. If V could only take �nitely many values, we would use the
trick

P(U ∈ du,Wτ = U) =
∑
v

P(U ∈ du,Wτ = U, V = v).

As we have v ∈ [0,∞), we are dealing with a more delicate situation. For our computa-
tion we will use the same idea, but instead of the sum we take an integral:

P(U ∈ du,Wτ = U) =

∫
v∈[0,∞)

P(U ∈ du,Wτ = U, V ∈ dv)

To continue, we'll rewrite the integrand using conditional probability, and use the joint
law ρ for further steps. Readers might notice that conditioning on the nullset {U =
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u, V = v} is problematic. However, this issue can be neglected as we already know
P(Wτ = u |U = u, V = v) = v

|u|+v
.

P
(
Wτ ∈ du

)
=

∫
v∈[0,∞)

P
(
U ∈ du, V ∈ dv

)︸ ︷︷ ︸
ρ(du,dv)

·P
(
Wτ = u|U = u, V = v

)︸ ︷︷ ︸
v

|u|+v

=

∫
v∈[0,∞)

|u|+ v

c
µ(du)µ(dv) · v

|u|+ v

=
µ(du)

c
·
∫
v∈[0,∞)

v dµ(v)︸ ︷︷ ︸
c

= µ(du)

The same computation shows also P(Wτ ∈ dv) = µ(dv). ThereforeWτ ∼ µ, and τ solves
the SEP for (W,µ). But we still don't know whether this is an integrable solution.

Before we start computing E(τU,V ), remember that in 1.11 we showed that for �xed
values U = u < 0 and V = v we have E(τu,v) = |u| · v. Further, remember that by
de�nition of conditional expectation we have E(τ) = E

(
E(τU,V |U, V )

)
.

Lemma 3.5.
If µ is a measure with �nite variance (meaning any random variable X with law µ has
�nite variance), then Hall's solution τ = τU,V is integrable.

Proof.

E(τ) =
∫ 0

−∞

∫ ∞

0

|u| · v · ρ(du, dv)

=

∫ 0

−∞

∫ ∞

0

|u| · v · |u|+ v

c
· µ(du)µ(dv)

=

∫ 0

−∞

∫ ∞

0

|u|2 · v
c

µ(du)µ(dv) +

∫ 0

−∞

∫ ∞

0

|u| · v2

c
µ(du)µ(dv)

=

∫ 0

−∞

|u|2

c
µ(du)

∫ ∞

0

v dµ(v)︸ ︷︷ ︸
c

+

∫ 0

−∞
|u|µ(du)︸ ︷︷ ︸
c

∫ ∞

0

v2

c
dµ(v)

=

∫ 0

−∞
u2dµ(u) +

∫ ∞

0

v2dµ(v)

=

∫ ∞

−∞
x2 dµ(x) <∞
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3.4 Properties and Existence of Solutions

In the last sections we saw two ways of solving the SEP. An important di�erence between
them is integrability: We showed that Doob's approach does not result in an integrable
solution, and Hall's solution is integrable under the condition that µ has �nite variance.
Further, we already clari�ed that we are mainly interested in minimal solutions, i.e
stopping times τ such that there exists no stopping time σ with Wσ ∼ Wτ and σ ≤
τ .

This raises questions: Does there always exist a solution satisfying both of these condi-
tions? What other properties can we deduce about integrable solutions?

First of all, it is not di�cult to show that all integrable solutions are minimal:

Lemma 3.6.
Let τ be a stopping time such that E(τ) < ∞. Then E(Wτ ) = 0, E(W 2

τ ) = E(τ) and τ
is minimal.

Proof.
First, note that E(Wτ ) = 0 and E(W 2

τ ) = E(τ) are the properties we get from Wald's
Lemma (1.12, 1.13). Now assume σ ≤ τ and Wσ ∼ Wτ :

E(σ) = E(W 2
σ ) = E(W 2

τ ) = E(τ)

Therefore, σ = τ a.s and τ indeed is a minimal stopping time.

So if we have an integrable solution τ of the SEP for (W, τ), we can conclude that µ
has �nite variance. To show this, let X be a random variable with law µ. From Wald's
Lemma (1.13) we get that E(W 2

τ ) = E(τ) <∞, and becauseWτ has law µ we have

V (X) =

∫
R
x2 dµ(x) = E(W 2

τ ) = E(τ) <∞.

Conversely, we see that if µ does not have �nite variance, there can't be an integrable
solution. If µ does have �nite variance, we can not conclude that any solution τ has
to be integrable (see [7, Corollary 3.3, Page 16]). However, Hall's approach makes sure
that if µ has �nite variance there exists an integrable solution.

Another important property is the following:

Lemma 3.7 ([7], Corollary 3.4).
If µ is centered and has support contained in an interval [−a, b], where a, b > 0 and τ is
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a minimal solution of the SEP for (W,µ), then τ is smaller or equal than the �rst exit
time τa ∧ τb of the interval [−a, b].

Proof.
As the support of µ is contained in an interval, µ has �nite variance. So there exists an
integrable solution σ (provided by Hall for instance), and as τ is minimal we have τ ≤ σ
and therefore E(τ) ≤ E(σ) <∞.

(Remark: σ is minimal as well as all integrable stopping times are minimal by Lemma
3.6, so σ ≤ τ , hence σ = τ . This observation is not important for the proof.)

Now Wτ ∈ [−a, b] a.s, hence

0 ≤ E
(
(Wτ + a)︸ ︷︷ ︸

≥0

· (b−Wτ )︸ ︷︷ ︸
≥0

) E(Wτ )=0
= ab− E(W 2

τ ).

Recall that E(τa ∧ τb) = ab (see Example 1.11) and E(W 2
τ ) = E(τ) by Wald (see Lemma

1.13):

E(τa ∧ τb)
1.11
= ab ≥ E(W 2

τ )
1.13
= E(τ)

This inequality contradicts the assumption τ > τa ∧ τb, hence we have

τa ∧ τb ≤ τ.

Remark 3.8.
Let us summarize our observations about the existence of solutions to the SEP.

� In the beginning of chapter 3 we established with help of Wald's Lemma (1.12)
that there can not be an integrable solution if µ is not centered, because if we had
E(τ) <∞, we would also have E(Wτ ) = 0.

� In this section we saw that there is also no integrable solution to the SEP of (W,µ)
if µ does not have �nite variance.

� If µ is centered with �nite variance, there is still the possibility that a solution τ
is not integrable, as we saw in Doob's approach.

� If µ is centered and has �nite variance, Hall's approach provides us with an inte-
grable solution.
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3.5 Root's Approach

We have already seen that we can construct a solution for the SEP by using hitting
times. For instance, Hall constructed a random interval (U, V ) and de�ned the desired
stopping time as the �rst time the Brownian motion W hits the boundary of (U, V ).
Root, likewise to Hall, also follows the concept of stopping when Brownian motion hits
some kind of boundary. The di�erence to Hall's approach is that he focuses not on the
one-dimensional process (Wt)t≥0, but on the two-dimensional process (t,Wt)t≥0.

In this section we will follow Hobson[7, Chapter 5], the original paper of Root [15]
and Cox & Wang [3].

De�nition 3.9.
We call a closed subset of [0,∞]× [−∞,∞] a Barrier, if

i) The tuple (∞, t) is element of B for every x ∈ [−∞,∞].

ii) The tuples (t,∞) and (t,−∞) are element of B for every t ∈ [0,∞].

iii) If (t, x) ∈ B, then for every s > t we have that (s, x) ∈ B.

Root's approach can be summarized as follows: For a given law µ �nd a barrier B such
that the stopping time τB := inf{u ≥ 0 | (u,Wu) ∈ B} is a solution of the SEP for
(W,µ).

Figure 3: The Root barrier B highlighted in orange stripes, and the Brownian motion
hitting the barrier at time τB.

Note that condition iii) makes sure that every barrier B can be written in the form
Rb := {(t, x) ∈ [0,∞] × [−∞,∞] | t ≥ b(x)} for a function b. This function, however,
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can also take ∞ as a value, and does not need to be continuous as we will see in example
3.10.

Example 3.10 ([7], Page 32).

i) Suppose µ ∼ N (0, 1). We know W1 ∼ µ, so our barrier is given by the function
b(x) = 1.

ii) Let µ = 1
2
· (δ−1 + δ1), i.e µ({1}) = µ({−1}) = 1

2
. We already showed the SEP can

be solved by the minimal hitting time τ−1 ∧ τ1. Hence b(x) = 0 for x ≤ −1 or for
x ≥ 1, and b(x) = ∞ for x ∈ (−1, 1). The barrier is given by B = {(t, x) | x ≤
−1 ∨x ≥ 1}. Note that we could choose the barrier B (resp. the barrier function
b) di�erently for x > 1 or x < −1 since we stop at x = −1 or x = 1 anyway.
Therefore, the barrier is not unique.

iii) Suppose µ = p·δ−1+p·δ1+(1−2p)·δ0, i.e µ({1}) = µ({−1}) = p and µ({0} = 1−2p,
which is de�ned for 0 ≤ p ≤ 1

2
. In this case, we need to add a set {(t, 0) | t ≥ t0(p)}

to the barrier of case ii) to allow (t,Wt) to stop at value 0 as well. This set has to
depend on p:

If p increases, it becomes less likely for the Brownian motion to stop at 0, and t0(p)
increases as well. In the case p = 0 we have t0(0) = 0 because we need Brownian
motion to stop immediately (as µ = δ0 in that case). Further, we have t0(

1
2
) = ∞

because p = 1
2
implies that Brownian motion can not stop at value 0. This value

leads us directly to example ii).

Figure 4: The barrier for example iii) hightlighted in color.

Theorem 3.11 ([15], Page 1 and [7], Page 31).
Let µ be a centered probability measure. There exists a barrier function b : [−∞,∞] →
[0,∞] such that the stopping time τ := inf{u ≥ 0 | (u,Wu) ∈ Rb} is a solution of the
SEP for (W,µ).
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We only prove this theorem for the case that µ is an atomic measure, meaning we assume
there is a �nite set X = {x0, x1, . . . , xN , xN+1} such that µ({xi}) = pi for i = 0, . . . , N+1
and

∑N+1
i=0 pi = 1.

Proof.
The goal of the proof is to show the existence of the barrier function b. Because of the
simplifying assumption that µ is atomic, we only need to �nd the values b(xi) for xi ∈ X .
As the Brownian motion can never stop at any other value, we set b(x) = ∞ for any
x ̸∈ X .

As µ is centered and has support contained in the interval [x0, xN+1], we already know
τ needs to be less or equal to the exit time τx0 ∧ τxN+1

, because otherwise τ can not
be minimal as we showed in the last section (see Corollary 3.7). To assure this, we set
b(x0) = b(xN+1) = 0.

Let γ = (γ1, . . . , γN) be a vector in RN
+ , i.e γi ≥ 0. We de�ne τγ := inf{u ≥ 0 | Wu =

xi, u ≥ γi, 0 ≤ i ≤ N + 1}.

Our goal is to show that there is a vector γ∗ such that Wτγ∗ ∼ µ, so we can de�ne the
barrier-function b(xi) = γ∗i and the proof is �nished.

To achieve this, we de�ne Γ = {γ ∈ RN
+ | P(Wτγ = xi) ≤ pi = µ(xi)} and show that Γ

has a minimal element.

Note that for γ ∈ Γ we have
∑N

i=1 P(Wτγ = xi) ≤ 1− p0 − pN+1, implying that we need
P(Wτγ = x0) + P(Wτγ = xN+1) ≥ p0 + pN+1. This is true because we obviously have∑N+1

i=0 P(Wτγ = xi) = 1 by de�nition of τγ.

We claim: If γ̃ and γ̂ are elements of Γ, then γ ∈ Γ, where γi := γ̃i ∧ γ̂i.

� Fix 1 ≤ i ≤ N , w.l.o.g we assume γ̂i ≤ γ̃i.

� Then τγ = τγ̂ on the set {Wτγ = xi}, and τγ ≤ τγ̂ otherwise.

� So we have {ω ∈ Ω : Wτγ = xi} ⊆ {ω ∈ Ω : Wτγ̂ = xi}, and therefore

P(Wτγ = xi) ≤ P(Wτγ̂ = xi) ≤ pi
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as γ̂ ∈ Γ. This proves the claim.

Therefore, there is a minimal element γ∗ such that γ∗ ∧ γ = γ∗ for all γ ∈ Γ. We claim
that γ∗ emmbeds µ, i.e Wτγ∗ ∼ µ.

� Assume γ∗ does not embed µ. Then there exists 1 ≤ i ≤ N sucht that P(Wτγ∗ =
xi) < pi.

� So we can reduce γ∗i without hurting the condition P(Wτγ∗ = xi) < pi, which makes
it more likely that Brownian motion stops at value xi.

� As this only reduces the probabilities P(Wτγ∗ = xj) for j ̸= i without changing γj,
the reduced vector is still in Γ. Hence γ∗ is not minimal. A contradiction.

This �nishes the proof for the atomic measure µ. The general result follows by extending
this simply�ed result with theory from the �eld of topology. Interested readers �nd this
in Rost [16].
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3.6 Optimality of Root's Solution

The de�nition of optimality in this context comes from Rost [16]. He called a solution
τ of the SEP for (W,µ) optimal, if for any t ∈ R+ it minimizes residual expectation
E((τ − t)+), i.e for any t ∈ R+ and for any other solution τ̃ of the SEP for (W,µ) a
solution τ is called optimal if it satis�es

E((τ − t)+) ≤ E((τ̃ − t)+).

In this section we will show that the root solution τB is optimal in the sense of Rost [16]
using mostly Cox & Wang [3, Chapter 5]. First, we need to observe the following:

Lemma 3.12.
A solution τ of the SEP for (W,µ) is of minimal residual expectation if and only if for
every convex, increasing function F with F (0) = F ′

+(0) = 0 it minimizes the quantity

E(F (τ))

Proof.
By F ′

+ we denote the right derivative of F . From now on we will write only write f
instead of F ′

+. Note that one direction of this equivalence is trivial as the function
F (τ) := (τ − t)+ is convex, increasing and satis�es F (0) = f(0) = 0.

The other direction follows from∫ ∞

0

(τ − t)+ dF ′′(t) = F (τ).

Note that, as F is convex, the function f is nondecreasing and therefore the measure
dF ′′((a, b]) := F ′

+(b) − F ′
+(a) = f(b) − f(a) exists. We show this equation simply by

using integration:

∫ ∞

0

(τ − t)+ dF ′′(t) = lim
L→∞

f(L) · (τ − L)+︸ ︷︷ ︸
0

− f(0)︸︷︷︸
0

·(τ − 0)+ −
∫ ∞

0

f(t) d(τ − t)+︸ ︷︷ ︸
0...τ<t

=

∫ τ

0

f(t) dt = F (τ)

Here you need to observe that, as (τ − t) is decreasing (in t), therefore we technically
integrate against a so called signed measure d(τ−t)+. We can easily �x this by changing
the sign of the integral and integrating against d(−(τ − t)+), which gives us 0 for t > τ .

Further, you might note that f = F ′
+ does not need to be continuous, hence it is

not clear whether we can use
∫ τ

0
f(t) dt = F (τ). However, we may use this form of
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the fundamental theorem because F is convex. One �nds this in Rockafellar[14,
pp. 24.2, 24.2.1].

To summarize this: Our goal in this section is to show the following:

Suppose τB is the Root solution of the SEP for (W,µ), and suppose τB is integrable.
Then, under the assumption that f = F ′

+ is bounded, for any other integrable solution
τ of the SEP for (W,µ) we have

E(F (τB)) ≤ E(F (τ)).

The precice statement will be formulated later in theorem 3.14, because the reader is
not familiar with all the necessary notatation yet.

Note that, di�erent than Cox & Wang [3], we only show optimality for integrable
solutions. However, this statement is correct if you also consider non integrable solutions
of the SEP. Further, one might note that Cox & Wang [3] work not only with the
classical SEP like we do in this thesis, but show optimality for the more general SEP
(X,µ) where Xt satis�es dXt = σt dWt.

A detailed introduction of this more general setting can be read right at the beginning
of chapter 4.

Before we start the proof of the statement above, we need to do some preparations. To
avoid confusion, we de�ne τ sB := inf{t ≥ s | (t,Wt) ∈ B}, i.e the stopping time τB from
the theorem can be denoted by τ 0B. Further, we need some additional assumptions for
the desired theorem to hold.

Preparation Phase I: The Function M

The �rst preparation we need is the function

M(t, x) := E(f(τ tB) | Wt = x).

In this context, three di�erent cases might occur:

In the left picture of �gure 3.6 we observe that Brownian motion has not crossed the
barrier at time t yet. The function M now tells us what, given the information Wt = x,
we have to expect for the value f(τB). One needs to be careful because it is easy to
confuse E(f(τB)) with f(E(τB)) here.
In the picture in the middle of �gure 3.6 you can observe that (t, x) ∈ B. In this case
we have τ tB = inf{u ≥ t | (u,Wu) ∈ B} = t, and therefore M(t, x) = f(t).
The most interesting case is probably the one we can observe in the right picture of �gure
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3.6. Here, the Brownian motion has crossed the Barrier already, but came back in the
compliment BC again. So t > τ 0B, but anyway we don't have τ tB = t in this case.

Figure 5: Three important cases for the function M .

Note that neither f , nor b needs to be continuous as they are in the pictures above.

In the left picture we observe that Brownian motion has not crossed the barrier at time t
yet. The functionM now tells us what, given the informationWt = x, we have to expect
for the value f(τB). One needs to be careful because it is easy to confuse E(f(τB)) with
f(E(τB)) here.
In the picture in the middle you can observe that (t, x) ∈ B. In this case we have
τ tB = inf{u ≥ t | (u,Wu) ∈ B} = t, and therefore M(t, x) = f(t).
The most interesting case is probably the right one. In this picture, the Brownian motion
has crossed the Barrier already, but came back in the compliment BC again. So t > τ 0B,
but anyway we don't have τ tB = t in this case.

Note that the function M always has the property M(t, x) ≥ f(t). This is true because
f is a nondecreasing function, so at time t we can not expect f to be smaller than the
current value at a future time τ tB.

Later in the proof we will also be confronted with the term M(0,Ws) for some s > 0.
This can be thought of a restart of the whole procedure: First, you watch the Brownian
motion until time s, then you start again at time 0 and at the value Ws you stopped
(see �gure 6).

We can even consider M(s,WτB), where we restart the whole process at time s. Re-
member that if s ≥ τ 0B, we restart the process at a point (s,Wτ0B

) ∈ B (see De�nition
3.9) and get M(s,Wτ0B

) = f(s).

Figure 7 shows the nontrivial case where the process is not restarted in B.

It is important to mention that we consider a new process after the restart. That is
why we can call the �rst hitting time of the barrier τ 0B (respectively τ sB) again. The time
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Figure 6: Restart at time zero before hitting the barrier.

Figure 7: Restart at time s exactly when the barrier is being hit for the �rst time.

which has passed until the original process reached the restarting level does not count
here anymore.

Last but not least, note that if one assumes f to be bounded, we trivially get that M is
locally bounded.

Preparation Phase II: The Function Z

The second function we need to de�ne is

Z(x) = 2 ·
∫ x

0

∫ y

0

M(0, z) dz dy.

Note that we have an expectation with the condition W0 = z, which technically is only
well de�ned for z = 0 if we restrict ourselves to standard Brownian motion. In the
setting of this proof, we need to adapt our concept of Brownian motion a little bit:
Instead of strictly starting at value zero, we let the condition {W0 = z} determine the
starting point of Brownian motion.
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Observe that we can di�erentiate Z twice, but Z ′′ might not be continuous:

Z ′(x) = 2 ·
∫ x

0

M(0, z)dz

Z ′′(x) = 2 ·M(0, x) > 0

However, it is evident that Z ′′ > 0 and therefore Z is convex. This gives us the possi-
bility to use a special version of Itô's formula (which does not require Z ′′ to be contin-
uous) called Meyer-Itô formula. It can be found in Protter [12, Theorem IV.71]. We
get:

Z(Wt) = Z(W0) +

∫ t

0

Z ′(Wt)dWt +
1

2

∫ t

0

Z ′′(Wt)dt

This will be useful in the proof later. Last but not least, observe that we always have
Z(x) ≥ 0. This fact seems clear for x ≥ 0, and for x < 0 we have

Z(x) =

∫ x

0

∫ y

0

M(0, z) dz dy
x<0
= −

∫ 0

x

∫ y

0

M(0, z) dz dy
y<0
=

∫ 0

x

∫ 0

y

M(0, z)︸ ︷︷ ︸
≥0

dz dy ≥ 0

Preparation Phase III: The Functions G and H

We de�ne

G(t, x) :=

∫ t

0

M(s, x) ds− Z(x)

H(x) =

∫ b(x)

0

(
f(s)−M(s, x)

)
ds+ Z(x)

Observe that for all (t, x) ∈ R+ × R we have G(t, x) +H(x) ≤ F (t):

� If t < b(x), then

G(t, x) +H(x) =

∫ t

0

M(s, x) ds+

∫ t

0

(
f(s)−M(s, x)

)
ds+

∫ b(x)

t

(
f(s)−M(s, x)

)︸ ︷︷ ︸
≤0

ds

≤
∫ t

0

f(s) ds = F (t)

� If t ≥ b(x), then (t, x) ∈ B and we can even show equality:

G(t, x) +H(x) =

∫ t

b(x)

M(s, x)︸ ︷︷ ︸
=f(s)

ds+

∫ b(x)

0

f(s) ds = F (t)
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Preparation Phase IV: The Key Lemma

Lemma 3.13 ([3], Lemma 5.2).
Suppose f is bounded and for any T > 0 we have E(Z(W0)) <∞ and

E
(∫ T

0

Z ′(Ws)
2 ds

)
<∞.

Then the process

G(t ∧ τ 0B,Wt∧τ0B)

is a martingale and the process

G(t,Wt)

is a submartingale.

One can �nd the proof of this Lemma in Cox & Wang [3, Page 882].
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The Proof of Optimality

We are �nally ready to state and prove the desired theorem:

Theorem 3.14 ([3], Theorem 5.3).
Suppose τB is the Root solution of the SEP for (W,µ), and suppose τB is integrable.
Then, under the assumptions that f = F ′

+ is bounded, E(Z(W0)) <∞ and

E
(∫ T

0

Z ′(Ws)
2 ds

)
<∞

for any other integrable solution τ of the SEP for (W,µ), we have

E(F (τB)) ≤ E(F (τ)).

Note that the assumption thatM is locally bounded (as we �nd it in [3]) is not necessary,
as we make the stronger assumption that f is bounded.

Proof.
First of all, note that we satisfy all assumptions of our key lemma (Lemma 3.13), hence
we may use that the process

Gt := G(t,Wt) =

∫ t

0

M(s,Wt) ds − Z(Wt)

is a submartingale. Therefore, the stopped process (Gt∧τ ) is a submartingale as well by
OST (see Remark 1.9). Now let τ be any integrable solution of the SEP (W,µ) and let
τ 0B be Root's solution. We divide the proof in three steps:

Step 1: Show E
(
G(t ∧ τ,Wt∧τ )

)
→ E

(
G(τ,Wτ )

)
.

We start our argumentation by establishing almost sure convergence. By Theorem 5.11
it su�ces to show that (Gt∧τ ) is bounded in L1. To do so, remember that we have
Z(x) ≥ 0 for all x ∈ R and f(t) ≤ lims→∞ f(s) =: f(∞):

Gt∧τ =

∫ t∧τ

0

M(s,Wt∧τ )︸ ︷︷ ︸
≤f(∞)

ds − Z(Wt∧τ ) ≤ f(∞) · τ
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As we need to bound the absolute value of Gt∧τ , we need to �nd a lower bound as well.
Therefore, it is necessary to estimate Z(Wt∧τ ).

We apply Meyer-Itô's formula:

E
(
Z(Wt∧τ )

)
= E(Z(W0)) + E

(∫ t∧τ

0

Z ′(Ws) dWs

)
︸ ︷︷ ︸

=0 because martingale

+
1

2
· E

(∫ t∧τ

0

Z ′′(Ws)︸ ︷︷ ︸
2·M(0,Ws)≤2·f(∞)

ds
)

≤ E(Z(W0)) + f(∞) · E(t ∧ τ) <∞

With help of Fatou's Lemma (see Lemma 5.3) and the facts that Z is continuous and τ
is �nite a.s (as it is integrable) we conclude that Z(Wτ ) is integrable:

E
(
Z(Wτ )

)
= E

(
Z( lim

t→∞
Wτ∧t)

)
= E

(
lim
t→∞

Z(Wτ∧t)
)
= E

(
lim inf
t→∞

Z(Wτ∧t)
)
≤ lim inf

t→∞
E
(
Z(Wτ∧t)

)
<∞

As Z is convex and Z(Wτ ) is integrable, we may use Jensen's inequality (see Theorem
5.14) and the OST (see Theorem 1.8) to show Z(Wt∧τ ) ≤ E

(
Z(Wτ ) | Ft

)
:

� If t ≤ τ we have Z(Wt∧τ ) = Z(Wt)
OST
= Z

(
E(Wτ | Ft)

)
≤ E

(
Z(Wτ ) | Ft

)
.

� If t > τ we have Z(Wt∧τ ) = Z(Wτ ) = E
(
Z(Wτ ) | Ft

)
.

Now we have that

Gt∧τ =

∫ t∧τ

0

M(s,Wt∧τ ) ds︸ ︷︷ ︸
≥0

−Z(Wt∧τ ) ≥ −Z(Wt∧τ ) ≥ E
(
Z(Wτ ) | Ft

)

Note that E
(
Z(Wτ ) | Ft

)
is trivially a closed martingale (see De�nition 5.12), and

therefore by Theorem 5.13 L1 convergent, uniformly integrable, and a.s convergent,
hence L1 bounded.

As we succeeded in bounding the submartingale Gt∧τ from above and from below by L1

functions, it is safe to say that Gt∧τ is L1 bounded, hence a.s convergent by Theorem
5.11.

The convergence in L1 follows directly from dominated convergence theorem (5.1). We
can use |Gt∧τ | ≤ max{

∣∣supt∈R E
(
Z(Wτ ) | Ft

)∣∣, ∣∣f(∞) · τ
∣∣}:

lim
t→∞

E(Gt∧τ )
DCT
= E( lim

t→∞
Gt∧τ ) = E(Gτ )

This completes STEP 1.
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Step 2: Show G(τ 0B,Wτ0B
) +H(Wτ0B

) = F (τ 0B)

Observe that b(Wτ0B
) = τ 0B:

G(τ 0B,Wτ0B
) +H(Wτ0B

) =

∫ τ0B

0

M(s,Wτ0B
) ds+

∫ b(W
τ0
B
)=τ0B

0

f(s)−M(s,Wτ0B
) ds

=

∫ τ0B

0

f(s) ds = F (τ 0B)

Step 3: Final argumentation

Remember that, as τ 0B and τ both solve the SEP, we have that Wτ0B
∼ Wτ . Further,

G(τ 0B,Wτ0B
) and F (τ 0B) are integrable, therefore

H(τ 0B) = F (τ 0B)−G(τ 0B,Wτ0B
)

is integrable as well. We conclude

E(H(Wτ )) = E(H(Wτ0B
))

On the other hand, we have E(G(τ 0B,Wτ0B
)) ≤ E(G(τ,Wτ )). To show this, we need to

remember that because of our �key lemma� we have that G(t,Wt) is a martingale, and
therefore OST brings us E(G(τ 0B,Wτ0B

)) = E(G(0,W0)) = G(0,W0).

But the key lemma (3.13) also makes sure that G(t∧ τ,Wt∧τ ) is a submartingale, hence
G(0,W0) ≤ E(G(t ∧ τ,Wt∧τ )) for every t ≥ 0. Therefore:

E(G(τ 0B,Wτ0B
)) = G(0,W0) ≤ lim

t→∞
E(G(t ∧ τ,Wt∧τ ))

STEP 1
= E(G(τ,Wτ ))

After all, we remember that G(t, x) +H(x) ≤ F (t) always holds and �nally show:

E(F (τ 0B))
STEP 2
= E

(
G(τ 0B,Wτ0B

)
+ E

(
H(Wτ0B

)
)
≤ E

(
G(τ,Wτ

)
+ E

(
H(Wτ )

)
≤ F (τ)
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4 Financial Applications of the SEP

In this chapter we will use the theory we established so far to derive some results in the
�eld of Financial Mathematics. Very important for this matter will be Root's solution
for the SEP and its optimality property.

Until now, we considered only the classical version of the SEP: Given a Brownian motion
(Wt) and a probability measure µ, �nd a stopping time τ (integrable if possible) such
thatWτ ∼ µ. We showed that Root's solution τB has the property that for every t ∈ R+,
for every convex and nondecreasing function F and for every other solution τ we always
have

F (τB) ≤ F (τ).

In this section we need to consider the SEP also for the more general class of processes
(Xt) satisfying

dXt = σ(Xt) dWt,

where σ : R → R. We assume:

i) |σ(x)− σ(y)| ≤ K · |x− y| for any x,y ∈ R (Lipschitz continuity)

ii) 0 < σ(x)2 < K(1 + x2) for every x ∈ R

iii) σ is smooth

These conditions exclude the function σ(x) = x as σ2(0) = 0, but it can be shown that
all our theory also works for this special case (see [3, Remark 5.5]). Note that Root's
approach works for this more general version of the SEP as well (as we did not use any
speci�c property of Brownian motion in the proof). Further, with slight adaptation of
the last section, one can show Root's optimality property as well. Interested readers
may read Rost [16] for Root's approach in the general context, and Cox & Wang [3]
for the proof of optimality.

Remark 4.1.
If we consider the SEP (X,µ), where (Xt) is not a Brownian motion, Wald's Lemma
(see Lemma 1.12) does no longer apply. Hence it is possible to get integrable solutions
without assuming µ to be centered. We can state a stronger result for the existence of
the Root Barrier and the Root solution for a measure µ with support on (0,∞), which
we initially stated only for centered measures (see Theorem 3.11).

One can �nd this stronger theory in Cox & Wang [3, Section 4]. The reader of this
thesis might need to read [3, Section 3] as well to understand why Cox & Wang
establish the existence of a solution in this special case. The SEP in Cox & Wang is
formulated a little di�erently, and it is being used that solving the SEP is equivalent to
solving the so called Obstacle problem.
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Studying these more general sections in Cox & Wang is recommended for the reader,
but an introduction here would go beyond the scope of this thesis as we would need to
de�ne a lot of new terminology. The basic idea and the detailed approach can be seen
in section 3.6 for a Brownian motion X = W . However, these more general results are
essential in the �nancial applications we are about to show.
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4.1 A Lower Bound for Call Prices on Volatility

Let (Pt)t≥0 be the price process of an asset de�ned on a �ltered probability space
(Ω,F , (Ft),P). We make the assumption that (Pt) is continuous. Let St := e−rtPt

be the discounted price process, where r > 0 is the (constant) interest rate.

Our goal is to derive a model independent bound for the price of the call option

([ln(S)]T −K)+

with maturity T and strike price K. We will follow Hobson [7, Section 5.2]. We are
going to use the optimality of the Root solution of the SEP (Z, µ), where the process Z
is to determine, and µ is the (implied) law of ST , which we can derive with the formula
of Breeden-Litzenberger (see Theorem 2.3).

First of all, note that we have ln(St) = ln(Pt)− r · t, hence [ln(S)]t = [ln(P )]t since the
nondecreasing part r · t does not contribute to quadratic variation. From now on we use
the notation Xt := lnSt.

Note that the price of the underlying call option is EQ
(
([ln(S)]T − K)+

)
, where Q is

a measure equivalent to P such that (ln(S)t) is a martingale, and that the function
x 7→ (x −K)+ is convex and nondecreasing. This is a very general formula, as we did
not use any speci�c equation for Pt or St.

Lemma 4.2.
The following equations are true:

i) [X]T =
∫ T

0
1
S2
u
d[S]u

ii) XT −X0 =
∫ T

0
1
Su
dSu − 1

2

∫ T

0
1
Su
d[S]u

In most literature they write dS2
t instead of d[S]t. In this thesis, however, we do not

follow this convention because it would be easy to mix up the terms dS2
t and d(S

2
t ). The

equations above can be shown with help of Itô's formula (see Theorem 1.30).

Proof.
The key for the proof of equation i) will be the formula d[X]t = d(X2

t )−2 ·XtdXt, which
we already established in 1.35. On the other hand, we know X2

t = ln(St)
2. Itô's formula

for f(t, x) = ln(x)2 yields

d(ln(St)
2) = 2 · ln(St)

St

dSt +
1

2

(
2

S2
t

− 2 · ln(St)

S2
t

)
d[S]t.

Further, we need to compute dXt = d(ln(St)):

d(ln(St)) =
dSt

St

− 1

2 · S2
t

d[S]t
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Note that this already shows equation ii). In total we get

d[X]t = 2XtdXt − d(X2
t )

= 2Xt

(
dSt

St

− 1

2 · S2
t

d[S]t

)
− 2 · Xt

St

dSt +
1

2

(
2

S2
t

− 2 ·Xt

S2
t

)
d[S]t =

1

S2
t

d[S]t,

which shows equation i).

From now on we assume w.l.o.g P0 = S0 = 1, which implies X0 = 0. The combination
of i) and ii) yields

Xt
ii
=

∫ t

0

1

Su

dSu︸ ︷︷ ︸
=:Mt

−1

2

∫ t

0

1

S2
u

d[S]u︸ ︷︷ ︸
i
=[X]t

.

Now the continuous local martingale (Mt) satis�es Xt =Mt − 1
2
[X]t, and as the nonde-

creasing process [X]t does not contribute to quadratic variation, we even have [M ]t =
[X]t. By Dambis-Dubin-Schwarz (see Theorem 3.3) there exists a Brownian motion (Wt)
such that we can write

Mt = W[M ]t = W[X]t .

Note that we have

St = eXt = eMt− 1
2
[X]t = eW[X]t

− 1
2
[X]t = Z[X]t

for the process Zt = eWt− 1
2
t, which is a local martingale as we already established in

example 1.33. Now observe that, as ST ∼ µ, we have that

Z[ln(S)]T = ST ∼ µ,

hence [ln(S)]T solves the SEP for (Z, µ).

Now let us try a di�erent approach: Let τB be the Root solution of the SEP for (Z, µ)
and let S̃t := Zτb∧ t

T−t
. This implies S̃T = ZτB .

By doing the same computations as above, we can show that [ln(S̃)]T solves the SEP
for (Z, µ). Now τB and [ln(S̃)]T both are minimal solutions of the SEP (as both are
integrable), and we may conclude τB = [ln(S̃)]T (see Lemma 3.6) . We call this way of
modelling the stock price the Root Model.

The price of the underlying call option using the Root Model to describe the behavior
of the stock price is EQ̃

(
(τB − K)+

)
, where Q̃ is a measure equivalent to P such that

(ln(S̃)t) is a martingale with respect to Q̃. The optimality property of the Root solution
τB now yields

EQ̃
(
(τB −K)+

)
≤ EQ

(
([ln(S)]T −K)+

)

80



4.2 Finding a Lower Bound by Subhedging the Option

In this section we assume the asset price (Pt) is a stochastic process de�ned on a complete
probability space (Ω,F , (Ft)t≥0), and the equation

dPt = Pt ·
(
µt dt+ σt dWt

)
describes the behavior of Pt. The interest rate process is given by (rt)t≥0 and the discount

is Bt := e
∫ t
0 rs ds. For our theory from the last sections to work in this context, we need

rt and σt to be locally bounded and predictable (see Cox & Wang [3, Assumption
6.1]).

By Q we denote the risk-neutral measure, which is equivalent to P and de�ned by
Girsanov (see Theorem 1.42) if one uses the market price of risk process

θ(t) =
µt − rt
σt

.

The Brownian motion yielded by Girsanov (1.42) is (as always in this thesis) denoted
by W̃t, and the corresponding �ltration is F̃t. Altogether, we have that the discounted
price process

St := e−
∫ t
0 rs ds︸ ︷︷ ︸

=B−1
t

·Pt,

satis�es

dSt = Stσt dW̃t,

which can be found in Shreve [17, Page 216].

A good intuition for this way of modelling can be achieved if one assumes µt and σt
to be constant, which yields the Black-Scholes model discussed in section 1.6.4. A
detailed build up of this model with rigorous explanations for risk-neutral pricing with
Girsanov in the case of non constant drift µt and volatility σ can be found in [17, Section
5.2.2].

We are going to use the construction from section 3.6 to �nd a subreplicating portfolio
(see De�nition 1.39) for an option with payo�

F
(∫ T

0

σ2
t dt

)
,

where F is a convex increasing function with F (0) = 0.

To do so, we follow Cox & Wang [3, Chapter 6].

Note that in the current setting we are unable to use theory from section 3.6, which is
why we have to perform a time change to get a simpler equation. Rigorous information

81



about this matter can be found in [8, Section 3.4, B]. The basic terminology and the
main results are brie�y introduced in the appendix (see Section 5.6).

Let us de�ne the time change Ct :=
∫ t

0
σ2
s ds, and let

At := inf{s ≥ 0 | Cs > t}

be the (right-continuous, see Section 5.6) inverse with CAt = t. The time changed
Brownian motion is given by

̂̃W t =

∫ At

0

σs dW̃s,

the time changed process is Ŝt = SAt and the time changed �ltration is ̂̃F t (see [3, Page
886]). Altogether we get

Ŝt = SAt =

∫ At

0

Suσu dW̃u
Le Gall

=

∫ At

0

Su d( σ · W̃︸ ︷︷ ︸∫
σu dW̃u

)t =
(
S · (σW̃ )

)
At

= ̂(
S · (σW̃ )

)
t

5.18
=

(
Ŝ · ̂̃W)

t
,

where we used property (ii) from Le Gall [10, Page 109]. This yields the simpli�ed
equation

dŜt = Ŝt d
̂̃W t.

Note that we have ŜCT
= ST = B−1

T PT , and also SAt = Ŝt.

Now we are ready to apply results from 3.6 concerning the optimality of solutions of the
SEP for (Ŝ,Q∗) (see Cox & Wang [3, Remark 5.5]), where Q∗ is the measure we get
from Breeden and Litzenberger (2.3). Let us do a little recap:

Remark 4.3.
In section 3.6 we de�ned the functions

M(t, x) = E(f(τ tB) | Ŝt = x)

Z(x) = 2 ·
∫ x

0

∫ y

0

M(0, z) dz dy

G(t, x) =

∫ t

0

M(s, x) ds− Z(x)

H(x) =

∫ b(x)

0

(
f(s)−M(s, x)

)
ds+ Z(x),
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where f = F ′
+ denoted the right derivative of F and

τ sB := inf{t ≥ s | (t, Ŝ) ∈ B}.

Note that we de�ned them for a Brownian motion Wt instead of considering a more
general process like we need here. One can convince themselves that all properties and
results still hold by reading [3, Chapter 5]. Remember that F is a convex increasing
function and that we need to assume that f is bounded. The inequality we established
in Phase III (section 3.6) now reads

G(t, SAt) +H(SAt) = G(t, Ŝt) +H(Ŝt) ≤ F (t) = F (CAt) = F
(∫ At

0

σ2
s ds

)
.

(see [3, Page 886])

Last but not least, remember that the process Gt = G(t, Ŝt) is a submartingale, and that

G(t ∧ τ 0B, Ŝt∧τ0B) is a martingale. This is similar to the claim from Lemma 3.13, which
is only stated for Brownian motion. The more general version of this Lemma we need
here is stated and proven in Cox & Wang [3, Lemma 5.2].

The last equality in remark 4.3 tells us that to subreplicate F we can construct a repli-
cating portfolio for Gt = G(t, Ŝt) and H(ST ). To see this, we write the inequality from
the Remark in the following form (using T instead of At):

F
(∫ T

0

σ2
u du

)
= F (CT ) ≥ G(Ct, ŜCT

) +H(ŜCT
) = G(CT , ST ) +H(ST )

However, as Gt is a submartingale (as we reminded ourselves in 4.3), subreplication G
with a self-�nancing portfolio is not expected to be possible (see [3, Page 887]), hence
we look for a subreplicating portfolio for G.

4.2.1 Subreplication of G

We follow the steps from Cox & Wang [3, Page 887] to �nd a strategy such that the
corresponding portfolio satis�es

VT ≤ G(CT , ST ).

By the decomposition theorem of Doob�Meyer (see Theorem 5.5 and read 4.4) we can

write the submartingale Gt = G(t, Ŝt) in the form

Gt =Mt + At,
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where (Mt) is a martingale and (At) is an increasing process. By the Martingale-
Representation Theorem (see Theorem 5.7 and read 4.4) we can writeMt in the form

Mt =M0 +

∫ t

0

ψu d
̂̃W u.

In total we get

Gt = G0︸︷︷︸
A0+M0

+At − A0︸ ︷︷ ︸
≥0

+

∫ t

0

ψu d
̂̃Wu︸ ︷︷ ︸

Mt−M0

.

To subreplicate Gt = G(t, Ŝt), we need to �nd a process Φ̂ such that

Gt ≥ G0 +

∫ t

0

Φ̂u dŜu.

We de�ne

Φ̂t =
Ψt

Ŝt

and compute (after remembering that dŜt = Ŝt d
̂̃W t):

Ψu d
̂̃W u = Ψu

dŜu

Ŝu

= Φ̂u dŜu.

Altogether, we get

G(t, Ŝt) = Gt ≥ G0 +

∫ t

0

ψu d
̂̃Wu = G0 +

∫ t

0

Φ̂u dŜu.

Remark 4.4.
As we are only interested in times 0 ≤ t ≤ T , it su�ces that (G(t∧T, Ŝt∧T )) � respectively
(Mt∧T ) � satisfy the conditions of Doob�Meyer � respectively Martingale Representation
Theorem. We can use Doob-Meyer's decomposition theorem, because the collection
(G(t, Ŝt))0≤t≤T is uniformly integrable, which follows from its L1 convergence and from
5.11. One might note that we don't know whether or not (Mt) is square integrable.
Hence, we can not apply the version of the Martingale Representation Theorem stated
in the appendix. However, we may apply a stronger version from Karatzas & Shreve
[8, Page 170].

The only problem is that the just derived subhedging strategy only works for the time
changed discounted stock price Ŝt. In our original model we need to use the strat-
egy

Φt := Φ̂Ct .
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We now have

G(Ct, St) = G(Ct, ŜCt) ≥ G(0, Ŝ0) +

∫ Ct

0

Φ̂u dŜu
5.18
= G(0, S0︸︷︷︸

=Ŝ0

) +

∫ t

0

Φu dSu

So let us consider the portfolio where we hold Φs ·B−1
T units of the risky asset and make

and investment of G(0, S0) · B−1
T − Φ0 · P0 · B−1

T in the risk free asset (at time 0). This
makes a total of G(0, S0) · B−1

T of initial investment in the portfolio consisting of the
risky and the riskless asset.

Note that we can choose our strategy H0 for the riskless asset such that the strategy
(H0,Φ ·B−1

T ) is self-�nancing (see Remark 1.52). The same computation as in the proof
of Lemma 1.44 yields:

d(B−1
t · Vt︸ ︷︷ ︸
Ṽt

) = B−1
T · Φt d(B

−1
t Pt︸ ︷︷ ︸
St

).

It follows that

VT = BT ·
(

V0 ·B−1
0︸ ︷︷ ︸

total initial investment

+

∫ T

0

B−1
T Φu d(B

−1
u Pu︸ ︷︷ ︸
Su

)

)
= G(0, S0) +

∫ T

0

Φu dSu

≤ G(CT , ST ),

which shows that the self-�nancing strategy of holding (Φt ·B−1
T ) units of the risky asset

and initially investing G(0, S0) · B−1
T − Φ0 · P0 · B−1

T in the riskless asset is indeed the
strategy we were looking for.

4.2.2 Replication of H

To replicate H with the method from Cox & Wang [3] we need to make the assumption
that the measure

dH ′((x, y)) = H ′(y)−H ′(x)

exists. This can be achieved for instance by assuming that H is a convex function. From
now on, we assume that H is a piecewise linear function. This can be justi�ed by arguing
that H can always be approximated by such a function in practice (see Cox & Wang
[3, Page 888]). Further, it is reasonable to assume that H has only �nitely many kinks
K, i.e points where left and right derivative of H do not coincide (see �gure 8).

We can write H(x) as follows:

H(x) = H(P0) +H ′(P0) · (x− P0) +
∑
K>P0

(x−K)+ ·H ′(dK) +
∑

0<K<P0

(K − x)+ ·H ′(dK)
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Figure 8: A possible graph of the convex and piecewise linear function H and its deriva-
tive H ′, which does not exist at the highlighted points.

One can get intuition for this formula in �gure 9. Note that this only holds in the case
where P0 is not a kink, because otherwise the term H ′(P0) would not exist. However,
if P0 is a kink we can use H ′(P0 − ε) (respectively H ′(P0 + ε) if x < P0) instead. This
fact becomes also clear by looking at �gure 9. For simplicity let us assume that H ′(P0)
exists.

Figure 9: A graphical way of explaining the formula for H(x).

Now let us take x = ST = B−1
T · PT :

H(ST ) = H(P0) +H ′
+(P0) · (B−1

T · PT − P0)︸ ︷︷ ︸
H(P0)−H′

+(P0)·P0+H′
+(P0)·B−1

T PT

+

∑
K>P0

(B−1
T · PT −K)+︸ ︷︷ ︸

B−1
T ·(PT−BTK)+

·H ′(dK) +
∑

0<K<P0

(K −B−1
T · PT )

+︸ ︷︷ ︸
B−1

T ·(BTK−PT )+

·H ′(dK)
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Altogether, we can replicate H(ST ) by a portfolio which consists of ..

� ..an amount of B−1
T ·

(
H(P0) − H ′

+(P0) · P0

)
of an riskless asset growing with

interest rate rt, for instance money on a bank account. At time T this amount will
be H(P0)−H ′

+(P0) · P0.

� ..B−1
T ·H ′

+(P0) units of the risky asset (whose price is being modelled with P )

� ..B−1
T ·H ′(dK) units of any call option with a strike price BT ·K, where K > P0

is a kink.

� ..B−1
T ·H ′(dK) units of any put option with strike price BT ·K, where 0 < K < P0.

(So you need to buy as many options as H has kinks.)

After these preparations we are ready for the �nal theorem of this thesis. The basic idea
now is that we constructed a subreplicating portfolio for our option F , and the price of
the option can not be less than the price of the subreplicating portfolio without causing
arbitrage.

Remark 4.5.
To acquire the subreplicating portfolio of the option with payo� F

(∫ T

0
σ2
u du

)
we just

constructed, we..

i) ..buy a total of B−1
T ·

(
Φ0 +H ′(P0)

)
of the risky asset at time 0, which costs us

B−1
T · Φ0 · P0︸ ︷︷ ︸

for G

+ B−1
T ·H ′(P0) · P0︸ ︷︷ ︸

for H

.

ii) ..invest an amount of

B−1
T ·G(0, P0)︸ ︷︷ ︸

for G

−B−1
T · Φ0 · P0︸ ︷︷ ︸

for G

+B−1
T ·H(P0)︸ ︷︷ ︸

for H

−B−1
T ·H ′(P0) · P0︸ ︷︷ ︸

for H

into the riskless asset.

iii) ..buy B−1
T · H ′(dK) units of the call option of strike price BT · K for any kink

K > P0. This costs

B−1
T ·

∑
K>P0, K kink

C(BTK) ·H ′(dK),

where C denotes the price of the call option.

iv) ..buy B−1
T · H ′(dK) units of the put option of strike price BT · K for any kink

0 < K < P0. This costs

B−1
T ·

∑
0<K<P0, K kink

P(BTK) ·H ′(dK),

where P denotes the price of the put option.
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The total cost of this portfolio is the sum of all these terms, i.e

total cost = B−1
T ·G(0, P0) +B−1

T ·H(P0)

+B−1
T ·

∑
K>P0, K kink

C(BTK) ·H ′(dK) +B−1
T ·

∑
0<K<P0, K kink

P(BTK) ·H ′(dK).

Assume price of the underlying option with payo� F
(∫ T

0
σ2
u du

)
is smaller than this

bound. Then we can �nd arbitrage by proceeding as in section 1.6.2:
Go short on the subreplicating portfolio, i.e borrow it at time 0 and sell it immediately
for the price we just calculated. By our assumption, the bene�t of this sell is big enough
to buy the option with payo� F

(∫ T

0
σ2
u du

)
. At time T , this option yields more than

the subreplicating portfolio. We use the money from this yield at time T to buy the
subreplicating portfolio, and give it back.

4.2.3 The Final Theorem

The following theorem can be found in Cox & Wang [3, Theorem 6.4]:

Theorem 4.6.
Let F be a convex, increasing function with F (0) = 0 and bounded right derivative
f(t) = F ′

+(t). If the price of the option with payo�

F
(∫ T

0

σ2
u du

)
is less than

B−1
T ·G(0, P0) +B−1

T ·H(P0)

+B−1
T ·

∑
K>P0, K kink

C(BTK) ·H ′(dK) +B−1
T ·

∑
0<K<P0, K kink

P(BTK) ·H ′(dK)

there exists arbitrage. The functions G and H are de�ned as in Remark 4.3, C(.) is the
price of a call option and P(.) is the price of a put option.

Proof.
Let us consider the SEP for (Ŝt,Q∗), where (Ŝt) is the time-changed discounted asset
price, and Q∗ is the measure obtained from Breeden & Litzenberger (see Theorem 2.3)
by using Call Prices relying on the original asset price process (Pt).

The existence of a Root solution is explained in Remark 4.1, hence the constructions
from the sections 4.2.1 and 4.2.2 are well de�ned and yield a subreplicating portfolio.

If the price of the option is smaller than the given bound, we proceed as in remark 4.5
to generate arbitrage.
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Remark 4.7.
The bound from theorem 4.6 is optimal in the following sense:
There exists an arbitrage-free model under which the price of the option is this bound.
One can �nd a proof for this claim in Cox & Wang [3, Page 889].
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5 Appendix

5.1 Convergence Theorems from Measure Theory

In this section we use [1][Bogachev]. Note that we formulate the following theorems
(unlike [1]) in the context of probability theory: Instead of using the notation

∫
Ω
X dP we

already write E(X). Further, we assume the functions Xn and X are random variables
de�ned on the probability space (Ω,F ,P) instead of stating the theorems for general
measurable functions.

Theorem 5.1 (Dominated Convergence Theorem, DCT, [1], p.130).
Let (Xn) be a sequence of integrable random variables and let limn→∞Xn = X hold
almost everywhere. Suppose there exists an integrable random variable Y such that for
every n we have

|Xn| ≤ Y a.e.

Then X is integrable and

lim
n→∞

E(Xn) = E(X).

Theorem 5.2 (Monotone Convergence Theorem, MCT, [1] p.130).
Let (Xn) be a sequence of integrable random variables satisfying Xn ≤ Xn+1 a.s for all
n ∈ N. Suppose that

sup
n∈N

E(Xn) <∞.

Then, the function X := limn→∞Xn is integrable and �nite almost everywhere, and we
have

lim
n→∞

E(Xn) = E(X).

Lemma 5.3 (Fatou's Lemma 1, [1], p.131).
Let (Xn) be a sequence of nonnegative integrable random variables, and suppose limn→∞Xn =
X holds almost everywhere. Further, suppose that

sup
n∈N

E(Xn) ≤ K <∞.

Then the random variable X is integrable and

E(X) ≤ K.

Further we have

E(X) ≤ lim inf
n→∞

E(Xn).
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Lemma 5.4 (Fatou's Lemma 2, [1], p.132).
Let (Xn) be a sequence of nonnegative integrable random variables, and suppose

sup
n∈N

E(Xn) ≤ K <∞.

Then, the function lim infn→∞Xn is integrable, and one has

E(lim inf
n→∞

Xn) ≤ lim inf
n→∞

E(Xn) ≤ K

5.2 Doob-Meyer Decomposition

In this section we shortly present the Doob-Meyer Decomposition Theorem as inKaratzas
& Shreve [8, Page 24, Theorem 4.10], but in a little less general form. We are going
to avoid the more general setting of the classes D and DL.

Theorem 5.5.
Let (Xt) be a right-continuous submartingale with respect to a �ltration (Ft), which
is right-continuous (see De�nition 5.15) and F0 contains all events with probability 0.
Assume (Xt) is uniformly integrable. Then we can write Xt in the form

Xt =Mt + At,

where (Mt) is a right-continuous martingale with respect to (Ft) and (At) is an increasing
process. This decomposition is unique.

5.3 Martingale Representation Theorem

De�nition 5.6 ([10], page 42).
Let (Xt)t≥0 be a stochastic process. The natural (or sometimes canonical) �ltration of
X is de�ned by Ft := σ(Xs | 0 ≤ s ≤ t) and F∞ := σ(Xs | s ≥ 0).

In the following theorem let Wt be a Brownian motion with natural �ltration Ft:

Theorem 5.7 (Martingale Representation Theorem, [9], 4.2.4).
Let (Mt) be a martingale w.r.t the �ltration (Ft)0≤t≤T , and let M be square integrable,
i.e for every t we haveMt ∈ L2(Ω,F ,P). Then there exists a previsible process (Ht)0≤t≤T

such that

E
(∫ T

0

H2
s ds

)
<∞
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and for all t ∈ [0, T ] we have:

Mt =M0 +

∫ T

0

Hs dWs

5.4 Leibniz' Rule and Di�erentiation of Limits

In this section we state the two theorems we need in the proof of Breeden-Litzenberger.
Leibniz' Rule can be found in Heuser [6, page 101].

Lemma 5.8 (Leibniz' Rule).
Let f : (α, β) × (c, d) → R , (t, x) 7→ f(t, x) be a continuous function with continuous
partial derivative ∂

∂t
f(t, x). Let a and b be functions (α, β) → (c, d) be di�erentiable

with continuous derivative. Then, the function

F (t) =

∫ b(t)

a(t)

f(t, x) dx

is di�erentiable in (α, β), and we have

F ′(t) = f
(
t, b(t)

)
· b′(t) − f

(
t, a(t)

)
· a′(t) +

∫ b(t)

a(t)

∂

∂t
f(t, x) dx

The following theorem is from Forster [5, page 270]:

Theorem 5.9.
Let fn : [a, b] → R be continuously di�erentiable for all n, and let fn converge pointwise
against f . Suppose f ′

n converges uniformly. Then f is di�erentiable and

f ′(x) = lim
n→∞

f ′
n(x).

5.5 Martingale Convergence, Jensen and Doob's Inequality

Theorem 5.10 ([10], Proposition 3.15, Page 53).
Let (Xt) be a martingale with right-continuous sample paths. Then, for every t > 0 and
every p > 1 we have

E
(
sup
0≤s≤t

|Xs|p
)
≤

( p

p− 1

)p · E(|Xt|)p.
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Theorem 5.11 ([10], Theorem 3.19, Page 58).
Let (Xt) be a supermartingale with right-continuous sample paths. Assume that the
collection (Xt)t≥0 is bounded in L1. Then there exists a random variable X∞ ∈ L1 such
that

lim
t→∞

Xt = X∞ a.s.

De�nition 5.12 ([10], De�nition 3.20, Page 59).
A martingale (Xt) is called closed, if there exists a random variable Z ∈ L1 such that
for every t ≥ 0 we have

Xt = E(Z | Ft).

Theorem 5.13 ([10], Theorem 3.21, Page 59).
Let (Xt) be a martingale with right-continuous sample paths. Then the following prop-
erties are equivalent:

i) (Xt) is a closed martingale.

ii) The random variables (Xt)t≥0 are uniformly integrable.

iii) The martingale (Xt) converges a.s and in L1 as t→ ∞.

If one of these properties holds (i.e all of them hold), then we also have Xt = E(X∞ | Ft)
for every t ≥ 0, where X∞(ω) := limt→∞Xt(ω).

Theorem 5.14 (Jensen, [17], Page 70).
Let the random variable X be de�ned on the probability space (Ω,F ,P) and let G be a
sub sigma algebra of F . If φ(x) is a convex function and X is integrable, then

E
(
φ(X) | G

)
≥ φ

(
E(X | G)

)

5.6 Time-Changed Processes

In this section we brie�y introduce the theory of time-changes. As reference we use
Revuz & Yor [13, chapter V, �1].

De�nition 5.15 ([10], page 42).
We call a �ltration (Ft)t≥0 right continuous, if for all t ≥ 0 we have

Ft =
⋂
s>t

Fs
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De�nition 5.16 ([13], (1.2)).
A time change C is a family (Cs)s≥0 of stopping times such that s 7→ Cs is a.s increasing
and right continuous.

In this section, let us always assume the �ltration Ft is right-continuous, and that (At)t≥0

is an increasing, right-continuous (i.e sample paths are right-continuous), to (Ft) adapted
process. We de�ne

Cs := inf{t ≥ 0 | At > s}.

One can show that Cs de�nes a time change (see [13, (1.1)]). Further, given a time
change C we get an increasing right-continuous process by de�ning

At := inf{s ≥ 0 | Cs > t}

If Xt is a previsible process w.r.t Ft, then the process X̂t := XCt is an F̂t-adapted
process. We call X̂ the time-changed process.

Note that, as Cs is an increasing process, the limit Cs+ := limu↗sCu exists, and

Cs− : inf{t ≥ 0 | At ≥ s}

De�nition 5.17 ([13], (1.3)).
We call a process X continuous with respect to a time change C, if X is constant
on each interval [Ct− , C].

In this thesis, the following proposition will be important. It tells us that if we have
processes X and H it does not make a di�erence whether we apply time changes and
take the stochastic integral (X̂ · Ĥ), or �rst take the stochastic integral (H ·X) and then

apply the time change ̂(X ·H).

Theorem 5.18 ([13], (1.4) ).
Let Ht be previsible with respect to Ft, then Ĥt is previsible with respect to F̂t. Further,
suppose X has �nite variation and is continuous with respect to C. Then

(X̂ · Ĥ) = ̂(X ·H),

or more precisely ∫ Ct

C0

Hs dXs =

∫ t

0

1Cu<∞HCu dXCu .
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