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Problem statement

Minimise

[/ f(Xs)ds+ g(X7,)

over continuous martingales X with fixed quadratic variation

(X); = t, defined on some bounded domain

DcRY d>2.
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An example of a problem in mathematical finance is to find

—supE[/f ) ds + g(X )}

This value may be very sensitive to the choice of the measure P.

Robust finance is concerned with finding model-independent
bounds such as

i%f’u(IP’) = sup inf E {/ f(X,)ds + '(/(X,_)} .
7 Jo

We study the inner optimisation problem and are interested in the

structure of multidimensional martingales.
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B is defined, with natural filtration [F.
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Problem formulation

Control set: Define U := {0 € R%?: Tr(o0 ') =1}

Fix a probability space on which a d-dimensional Brownian motion
B is defined, with natural filtration [F.

Let U be the set of U-valued F-progressively measurable processes.

Dynamics: For x € D and v € U, define X” by the stochastic
integral

t
Xt”:x+/ vsdBs, t>0.
0

Value function: Find the value function v': D — R,

oa) = inf B [ [ a0 as+ ox)



Markov controls

Example: Let o : D — U be Lipschitz. Then there is a unique
strong solution X of the SDE

dXt = O'(Xt) dBt, X() =x.

Define v = o(X7) for all ¢ > 0.



Markov controls

Example: Let o : D — U be Lipschitz. Then there is a unique
strong solution X of the SDE

dXt = O'(Xt) dBt, X() =x.

Define vy = o(X7) for all t > 0.Then v € U and

t
Xf:x—i—/ vsdBs = XY .
0

This v is an example of a Markov control.
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2. f is radially symmetric; i.e. f(z) = f(|z|)

3. g is constant



olo)i= nf 7 | [ 70e0) ds +gx0).
. D = Bp(0) Cc R?

. f is radially symmetric; i.e. f(z) = f(\x|)

. g is constant

f is continuous

. f’jr(r) exists for all » > 0 and changes sign finitely many times

f is monotone and sufficiently smooth near the origin
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Radial motion

Optimal behaviour for f monotonically increasing

Sample path of X}
= Control: _ [z; 0; 0]
;0;...;

= Radius process: dR, = dW,



Tangential motion

Optimal behaviour for f monotonically decreasing



Tangential motion

Optimal behaviour for f monotonically decreasing

Sample pathi of X Sample path of R;



Tangential motion

Optimal behaviour for f monotonically decreasing

Sample path of X;



Two optimal behaviour regimes

O &

(a) Sample path of radial (b) Sample path of
motion tangential motion

10 10]
. o

(c) Sample path of radius (d) Sample path of radius
process for (a) process for (b)




Two optimal behaviour regimes

Claim
For any f satisfying Assumptions 1-6, an optimal strategy is to
switch between radial and tangential motion.

Figure 4: A possible optimal trajectory
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Method of solution

1. Prove that the value function v is the unique viscosity solution
of
—inf,ep Tr(D?voo ") = f in D

(HJB)
v=g on 0D

2. Find switching points to construct candidate value function V

3. Show that the candidate function V' solves (HJB)



Construction of value function

Claim that the optimal strategy is to switch between radial and
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Then v(x) = 9(|z|), where
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Construction of value function

Claim that the optimal strategy is to switch between radial and

tangential motion.

Then v(x) = 9(|z|), where

» 9(R) =y

= and, for r € (0, R), either
57 = ), o
— 5 7(r) = Fr).

To minimise

we seek to maximise /(7).



An example

Consider the cost function f(x) = sin(|z|)
— f(r)=sinr i
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Switching points




Return to the example

D




Switching points

Switching point is determined by

ry = inf{r > sg: /Or f(s)ds > rf(r)}

By continuity of f, we have smooth fit at 7.



Switching points

0 r sy 2nd order

We need to enforce smooth fit at s1



Return to the example
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Return to the example
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Return to the example

'(r) = —2rf(r)
ug(r) = =2f(r), (u2)' (s1) = wi'(s1)
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Switching points

0 r sy 2nd order

We need to enforce smooth fit at s1, and we need a 2nd order

condition to determine the switching point:

s1 = inf{r > so: ¥ (r) < —2f(r)}.



Switching points

0 r sy 2nd order

We need to enforce smooth fit at s1, and we need a 2nd order

condition to determine the switching point:

s1 = inf{r > so: f}(r) > 0}.



Switching points

Continue in this way to construct a sequence of switching points
So<r<...<mr;<s;<...,
with
T ~ ~
rii=inf S 7 > s;_1: / f(s)ds >rf(r) ¢,
JSi—1

and
s; := inf {7’ > 7 fi(r) > 0} .



Switching points

Continue in this way to construct a sequence of switching points
So<r<...<mr;<s;<...,
with

T ::inf{r > 8i_1: /T f(s)ds > rf(r)},

and
s; := inf {7’ > 7 fi(r) > 0} .

We arrive at the following candidate value function V : D — R.



Candidate value function

Case 1: If f is increasing in (0,m), then set so =0 and let K € N
be such that R € (sx_1,sk]. For x € D, define

V(x) :g—2/SK sf(s)ds

RVrg

— 2k — RATR)SK-1f(5K-1) — 2 /TK / F(t)dtds

R/\T’K
K

+2)  Lygs sy (I2) [(n —|z| Ari)si—1f(s—1)

i=1
+/l / f(t)dtdw/” sf(s)ds + 3K
lx|AT; Jsi—1 |z|Vr;




Candidate value function

Case 2: If f is decreasing in (0,7), then set rg = 0 and let L € N
be such that R € (rp,rp+1]. For x € D, define

V(x) :g—2/8L sf(s)ds

RAsy,

RVsy, 5
+2(RVSL5L)SLf(sL)+2/ / f(t)dtds

L

+2 Z Litrs i)y (12]) [/ i Sf(s) ds — (|lz| V si — Si)sif<3i)

i—0 z|As;

lz|Vs;  ps
—/ /f(t)dtds—k&f




Candidate value function

There exist constants Cj, C’z such that
V(x) =

—2 fs‘r,ll I f(t)dtds — 2|z| si—1 f(si—1) + Ci, || € [8i-1,7i],
=% fr‘f' sf(s) ds + C;, |z| € [rs, si].

Theorem [Cox and R. 2021+]
Under Assumptions 1-6, the value function is given by

v=V.



Idea of the proof

1. Prove that the value function v

= is continuous and semi-convex
= satisfies a dynamic programming principle
= is the unique viscosity solution of

{;inf,,eUTr(DzvaaT)f in D T

v=g on 0D



Idea of the proof

1. Prove that the value function v
= is continuous and semi-convex
= satisfies a dynamic programming principle
= is the unique viscosity solution of

(HJB)

—Linf,ep Tr(D*voo ™) = f in D
v=g on 0D

2. Verify that V solves (HJB)



Idea of the proof

1. Prove that the value function v

= is continuous and semi-convex
= satisfies a dynamic programming principle
= is the unique viscosity solution of

(HJB)

—Linf,ep Tr(D*voo ™) = f in D
v=g on 0D

2. Verify that V solves (HJB)
3. Conclude that v =V



Extension of results




Original assumptions

We now relax the assumptions:

PePy

v(z) := inf EP [/ f(Xs)ds + g(X )]

D = Bg(0)

f radially symmetric; i.e. f(z) = f(|z|)
g constant

f continuous

fjr(r) exists for all > 0 and changes sign finitely many times
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Relaxed assumptions

We now relax the assumptions:

PePy

v(z) := inf EP [/ f(Xs)ds + g(X )]

D = Br(0)

f radially symmetric; i.e. f(z) = f(|z|)
g constant

f continuous in D \ {0}

fjr(r) exists for all > 0 and changes sign finitely many times

@ & o~ N E

f is monotone near the origin



Optimal behaviour

O &

Radial motion

;0]

Tangential motion
l/t—O'(Xt) |X|[Xf707"'.0}

6 = a—()Q) 4(36

x =0
-



Extension of results

Suppose that

o
Se)w ~=
| —




Extension of results

Suppose that
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Suppose that

/OTsf(s)ds:—Foo.
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Extension of results

Suppose that
| 7
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An SDE with no strong solution

Fix d = 2 and let B be a one-dimensional Brownian motion.

Theorem [Larsson and Ruf, 2020]

The SDE .

|Xt|XtL dBy; Xo=0 (1)

dX,

has a weak solution.
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An SDE with no strong solution

Fix d = 2 and let B be a one-dimensional Brownian motion.

Theorem [Larsson and Ruf, 2020]

The SDE .

|Xt|XtL dBy; Xo=0 (1)

= L(¢ X
Theorem [Cox and R. 2021-+] fo E(’ )al/

+ dBy
The SDE (1) has no strong solution.

dX,

has a weak solution.

= Proof uses ideas from the study of Tsirelson's equation.

= We use properties of circular Brownian motion, as proved in
[Emery and Schachermayer, 1999].



An SDE with no strong solution

Theorem [Cox and R. 2020+]
Fix d = 2 and suppose that

/Tf(s)d.s:oo and /Tsf(s)ds<oo.
0 0

Then v =V < 0.



An SDE with no strong solution

Theorem [Cox and R. 2020+]
Fix d = 2 and suppose that

/Tf(s)d.s:oo and /Tsf(s)ds<oo.
0 0

Then v =V < o0.

= A weak solution X of (1) generates a Browni’a‘n filtration by
[Emery and Schachermayer, 1999] 3> = 3."‘/



An SDE with no strong solution

Theorem [Cox and R. 2020+] té/ - a—(Xé/
Fix d = 2 and suppose that M = y(/gjd&
/Orf(s)d.s:oo and /O7isf(s)ds<oo.

Then v =V < o0.

= A weak solution X of (1) generates a Brownian filtration by
[Emery and Schachermayer, 1999]

= There exists »* € U/ such that
t
Y; ::/ vy dBs.
0

satisfies YV v X.



An SDE with no strong solution

Theorem [Cox and R. 2020+]
Fix d = 2 and suppose that

/ f(s)ds =0 and / sf(s)ds < oco.
0 0
Then v =V < oo.

Conjecture

Fix d = 2 and suppose that
/ f(s)ds =00 and / sf(s)ds < oco.
0 0

7 ())

Then v(0) < v™(0).
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= Constructed the value function explicitly for continuous
radially symmetric costs

= Extended this result to costs that become infinite at the origin

= Conjecture that there exists a case where the value at the
origin is greater when restricted to Markov controls:

= Proved that an SDE describing tangential motion has a weak
solution but no strong solution started from the origin

= Proved that an approximating sequence of SDEs have no
strong solution

= Require to prove that these SDEs have no strong solution
when driven by 2D Brownian motion
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= Constructed the value function explicitly for continuous
radially symmetric costs

= Extended this result to costs that become infinite at the origin

= Conjecture that there exists a case where the value at the
origin is greater when restricted to Markov controls

For details, see the thesis
Stochastic control problems for multidimensional martingales

https://mat.univie.ac.at/~brobinson



